IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v35y2018i1d10.1007_s10878-015-9987-2.html
   My bibliography  Save this article

Closed-loop supply chain inventory management with recovery information of reusable containers

Author

Listed:
  • Tianji Yang

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Chao Fu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Xinbao Liu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Jun Pei

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Lin Liu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Panos M. Pardalos

    (University of Florida)

Abstract

This paper considers a closed-loop supply chain consisting of one-manufacturer and one-retailer. This supply chain provides single-kind products with reusable containers. The main purpose of this study is to explore and evaluate the value of recovery information captured by embedded sensors in the environment of internet of things. The recovery information of containers dynamically monitors recovery status and provides a reliable estimation of return quantity. The value of information is measured by the cost saving performances with full, partial or no recovery information. When the full or partial recovery information is available, the decisions are made based on the known quantities of the usable or total return flow. When no recovery information is available, the decisions are made based on the stationary distribution of the return flow. A periodic inventory model is built with uncertainties of forward and reverse flows. Then, a myopic order policy is proposed for the different levels of information utilization. Through the optimality analysis, we introduce a farsighted inventory control policy. Using the general result of Markov decision processes, the performance of heuristic policies is displayed. The farsighted policy performs better than the myopic policy. In addition, the farsighted policy helps to lessen the convex impact of utilization rate on the expected cost. Afterwards, we extend the model with the selective disposal behavior. A simulation study is used to depict sensitivity and robustness of the farsighted policy. Finally, we extend the simulation experiment with uniformly distributed in-use time for a more general applicability.

Suggested Citation

  • Tianji Yang & Chao Fu & Xinbao Liu & Jun Pei & Lin Liu & Panos M. Pardalos, 2018. "Closed-loop supply chain inventory management with recovery information of reusable containers," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 266-292, January.
  • Handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-015-9987-2
    DOI: 10.1007/s10878-015-9987-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9987-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9987-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Benítez, Rocío & Ketzenberg, Michael & van der Laan, Erwin A., 2014. "Managing consumer returns in high clockspeed industries," Omega, Elsevier, vol. 43(C), pages 54-63.
    2. L. Beril Toktay & Lawrence M. Wein & Stefanos A. Zenios, 2000. "Inventory Management of Remanufacturable Products," Management Science, INFORMS, vol. 46(11), pages 1412-1426, November.
    3. Kim, Taebok & Glock, Christoph H. & Kwon, Yongjang, 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Omega, Elsevier, vol. 43(C), pages 30-40.
    4. Kim, T. & Glock, C. H., 2014. "On the use of RFID in the management of reusable containers in closed-loop supply chains under stochastic container return quantities," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63689, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Atamer, Büşra & Bakal, İsmail S. & Bayındır, Z. Pelin, 2013. "Optimal pricing and production decisions in utilizing reusable containers," International Journal of Production Economics, Elsevier, vol. 143(2), pages 222-232.
    6. Michael Ketzenberg & Jacqueline Bloemhof & Gary Gaukler, 2015. "Managing Perishables with Time and Temperature History," Production and Operations Management, Production and Operations Management Society, vol. 24(1), pages 54-70, January.
    7. Bryan, Nana & Srinivasan, Mandyam M., 2014. "Real-time order tracking for supply systems with multiple transportation stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 548-560.
    8. Kim, T. & Glock, C. H. & Kwon, Y., 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62024, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. M. Pourakbar & E. Laan & R. Dekker, 2014. "End-of-Life Inventory Problem with Phaseout Returns," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1561-1576, September.
    10. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands II. The Discounted-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 208-215, May.
    11. Thomas E. Morton, 1971. "Technical Note—On the Asymptotic Convergence Rate of Cost Differences for Markovian Decision Processes," Operations Research, INFORMS, vol. 19(1), pages 244-248, February.
    12. Zolfagharinia, Hossein & Hafezi, Maryam & Farahani, Reza Zanjirani & Fahimnia, Behnam, 2014. "A hybrid two-stock inventory control model for a reverse supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 141-161.
    13. Ketzenberg, Michael, 2009. "The value of information in a capacitated closed loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(2), pages 491-503, October.
    14. Fleischmann, Moritz & Kuik, Roelof, 2003. "On optimal inventory control with independent stochastic item returns," European Journal of Operational Research, Elsevier, vol. 151(1), pages 25-37, November.
    15. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands I. The Average-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 193-207, May.
    16. Zerhouni, Hichem & Gayon, Jean-Philippe & Frein, Yannick, 2013. "Influence of dependency between demands and returns in a reverse logistics system," International Journal of Production Economics, Elsevier, vol. 143(1), pages 62-71.
    17. de Brito, Marisa P. & van der Laan, Erwin A., 2009. "Inventory control with product returns: The impact of imperfect information," European Journal of Operational Research, Elsevier, vol. 194(1), pages 85-101, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huailian Lin & Shuqiao Wu & Si Zhang & Wenting Liu, 2023. "Design of Reverse Network for Recyclable Packaging Boxes under Uncertainties," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    2. Tan, Weng Chun & Sidhu, Manjit Singh, 2022. "Review of RFID and IoT integration in supply chain management," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Mahmoudi, Monirehalsadat & Parviziomran, Irandokht, 2020. "Reusable packaging in supply chains: A review of environmental and economic impacts, logistics system designs, and operations management," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Pablo Becerra & Josefa Mula & Raquel Sanchis, 2022. "Sustainable Inventory Management in Supply Chains: Trends and Further Research," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    5. Chunmei Ma & Dan Huang, 2020. "Research on the impact of green innovation alliance mode on decision-making of two-cycle closed-loop supply chain," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 519-546, February.
    6. Benyamin Moghaddasi & Amir Salar Ghafari Majid & Zahra Mohammadnazari & Amir Aghsami & Masoud Rabbani, 2023. "A green routing-location problem in a cold chain logistics network design within the Balanced Score Card pillars in fuzzy environment," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-33, July.
    7. Man Yang & Tao Zhang, 2023. "Demand forecasting and information sharing of a green supply chain considering data company," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Monirehalsadat & Parviziomran, Irandokht, 2020. "Reusable packaging in supply chains: A review of environmental and economic impacts, logistics system designs, and operations management," International Journal of Production Economics, Elsevier, vol. 228(C).
    2. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    3. Meherishi, Lavanya & Narayana, Sushmita A. & Ranjani, K.S., 2021. "Integrated product and packaging decisions with secondary packaging returns and protective packaging management," European Journal of Operational Research, Elsevier, vol. 292(3), pages 930-952.
    4. Yanqi Zhang & Xiaofei Kou & Haibin Liu & Shiqing Zhang & Liangliang Qie, 2022. "IoT-Enabled Sustainable and Cost-Efficient Returnable Transport Management Strategies in Multimodal Transport Systems," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    5. Xiting Gong & Xiuli Chao, 2013. "Technical Note---Optimal Control Policy for Capacitated Inventory Systems with Remanufacturing," Operations Research, INFORMS, vol. 61(3), pages 603-611, June.
    6. Zhang, Qinhong & Segerstedt, Anders & Tsao, Yu-Chung & Liu, Biyu, 2015. "Returnable packaging management in automotive parts logistics: Dedicated mode and shared mode," International Journal of Production Economics, Elsevier, vol. 168(C), pages 234-244.
    7. Elia, Valerio & Gnoni, Maria Grazia, 2015. "Designing an effective closed loop system for pallet management," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 730-740.
    8. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    9. Ponte, Borja & Naim, Mohamed M. & Syntetos, Aris A., 2019. "The value of regulating returns for enhancing the dynamic behaviour of hybrid manufacturing-remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 278(2), pages 629-645.
    10. Cobb, Barry R., 2016. "Inventory control for returnable transport items in a closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 53-68.
    11. Liao, Haolan & Zhang, Qingyu & Shen, Neng & Nie, Yongyou & Li, Lu, 2021. "Coordination between forward and reverse production streams for maximum profitability," Omega, Elsevier, vol. 104(C).
    12. Iassinovskaia, Galina & Limbourg, Sabine & Riane, Fouad, 2017. "The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 570-582.
    13. Mabel C. Chou & Chee-Khian Sim & Xue-Ming Yuan, 2020. "Policies for inventory models with product returns forecast from past demands and past sales," Annals of Operations Research, Springer, vol. 288(1), pages 137-180, May.
    14. Sari, Kazim, 2010. "Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 174-183, November.
    15. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    16. James A. Rappold & John A. Muckstadt, 2000. "A computationally efficient approach for determining inventory levels in a capacitated multiechelon production‐distribution system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 377-398, August.
    17. Y. Boulaksil & J. C. Fransoo & T. Tan, 2017. "Capacity reservation and utilization for a manufacturer with uncertain capacity and demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 689-709, July.
    18. Gullu, Refik, 1998. "Base stock policies for production/inventory problems with uncertain capacity levels," European Journal of Operational Research, Elsevier, vol. 105(1), pages 43-51, February.
    19. Awi Federgruen & Min Wang, 2015. "Inventory Models with Shelf-Age and Delay-Dependent Inventory Costs," Operations Research, INFORMS, vol. 63(3), pages 701-715, June.
    20. Lee, Jun-Yeon & Schwarz, Leroy B., 2009. "Leadtime management in a periodic-review inventory system: A state-dependent base-stock policy," European Journal of Operational Research, Elsevier, vol. 199(1), pages 122-129, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-015-9987-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.