IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i4d10.1007_s10878-015-9965-8.html
   My bibliography  Save this article

The popular matching and condensation problems under matroid constraints

Author

Listed:
  • Naoyuki Kamiyama

    (Kyushu University)

Abstract

The popular matching problem introduced by Abraham, Irving, Kavitha, and Mehlhorn is a matching problem in which there exist applicants and posts, and applicants have preference lists over posts. A matching M is said to be popular, if there exists no other matching N such that the number of applicants that prefer N to M is larger than the number of applicants that prefer M to N. The goal of this problem is to decide whether there exists a popular matching, and find a popular matching if one exists. In this paper, we first consider a matroid generalization of the popular matching problem with strict preference lists, and give a polynomial-time algorithm for this problem. In the second half of this paper, we consider the problem of transforming a given instance of a matroid generalization of the popular matching problem with strict preference lists by deleting a minimum number of applicants so that it has a popular matching. This problem is a matroid generalization of the popular condensation problem with strict preference lists introduced by Wu, Lin, Wang, and Chao. By using the results in the first half, we give a polynomial-time algorithm for this problem.

Suggested Citation

  • Naoyuki Kamiyama, 2016. "The popular matching and condensation problems under matroid constraints," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1305-1326, November.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:4:d:10.1007_s10878-015-9965-8
    DOI: 10.1007/s10878-015-9965-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9965-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9965-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telikepalli Kavitha & Meghana Nasre & Prajakta Nimbhorkar, 2014. "Popularity at minimum cost," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 574-596, April.
    2. Satoru Fujishige & Akihisa Tamura, 2007. "A Two-Sided Discrete-Concave Market with Possibly Bounded Side Payments: An Approach by Discrete Convex Analysis," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 136-155, February.
    3. Eric McDermid & Robert W. Irving, 2011. "Popular matchings: structure and algorithms," Journal of Combinatorial Optimization, Springer, vol. 22(3), pages 339-358, October.
    4. Tamás Fleiner, 2003. "A Fixed-Point Approach to Stable Matchings and Some Applications," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 103-126, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuo Murota, 2016. "Discrete convex analysis: A tool for economics and game theory," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 151-273, December.
    2. Kojima, Fuhito & Tamura, Akihisa & Yokoo, Makoto, 2018. "Designing matching mechanisms under constraints: An approach from discrete convex analysis," Journal of Economic Theory, Elsevier, vol. 176(C), pages 803-833.
    3. Yu Yokoi, 2017. "A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 238-255, January.
    4. Naoyuki Kamiyama, 2022. "Strongly Stable Matchings under Matroid Constraints," Papers 2208.11272, arXiv.org, revised Sep 2022.
    5. Satoru Iwata & Yu Yokoi, 2020. "Finding a Stable Allocation in Polymatroid Intersection," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 63-85, February.
    6. Rashid Farooq & Ayesha Mahmood, 2017. "A Note on a Two-Sided Discrete-Concave Market with Possibly Bounded Salaries," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-21, September.
    7. Kazuo Murota & Yu Yokoi, 2015. "On the Lattice Structure of Stable Allocations in a Two-Sided Discrete-Concave Market," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 460-473, February.
    8. Paula Jaramillo & Çaǧatay Kayı & Flip Klijn, 2014. "On the exhaustiveness of truncation and dropping strategies in many-to-many matching markets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 793-811, April.
    9. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    10. Chen, Peter & Egesdal, Michael & Pycia, Marek & Yenmez, M. Bumin, 2016. "Median stable matchings in two-sided markets," Games and Economic Behavior, Elsevier, vol. 97(C), pages 64-69.
    11. Marco LiCalzi, 2022. "Bipartite choices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(2), pages 551-568, December.
    12. Fleiner, Tamas, 2003. "On the stable b-matching polytope," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 149-158, October.
    13. Danilov, Vladimir I. & Karzanov, Alexander V., 2023. "Stable and meta-stable contract networks," Journal of Mathematical Economics, Elsevier, vol. 108(C).
    14. Federico Echenique & SangMok Lee & Matthew Shum & M. Bumin Yenmez, 2021. "Stability and Median Rationalizability for Aggregate Matchings," Games, MDPI, vol. 12(2), pages 1-15, April.
    15. Lars Ehlers & Thayer Morrill, 2020. "(Il)legal Assignments in School Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(4), pages 1837-1875.
    16. Benjamin Tello, 2022. "Stability and Contractual Efficiency in Matching with Contracts and Lexicographic Preferences," Economics Bulletin, AccessEcon, vol. 42(1), pages 41-48.
    17. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    18. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'économie 14.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    19. Federico Echenique & Ruy González & Alistair J. Wilson & Leeat Yariv, 2022. "Top of the Batch: Interviews and the Match," American Economic Review: Insights, American Economic Association, vol. 4(2), pages 223-238, June.
    20. Sean Horan & Vikram Manjunath, 2022. "Lexicographic Composition of Choice Functions," Papers 2209.09293, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:4:d:10.1007_s10878-015-9965-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.