Robust second-order least-squares estimation for regression models with autoregressive errors
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-016-0829-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xin Chen & Min Tsao & Julie Zhou, 2012. "Robust second-order least-squares estimator for regression models," Statistical Papers, Springer, vol. 53(2), pages 371-386, May.
- Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
- Liqun Wang & Alexandre Leblanc, 2008. "Second-order nonlinear least squares estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 883-900, December.
- Dedi Rosadi & Shelton Peiris, 2014. "Second-order least-squares estimation for regression models with autocorrelated errors," Computational Statistics, Springer, vol. 29(5), pages 931-943, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
- Mustafa Salamh & Liqun Wang, 2021. "Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors," Econometrics, MDPI, vol. 9(4), pages 1-17, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mustafa Salamh & Liqun Wang, 2021. "Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors," Econometrics, MDPI, vol. 9(4), pages 1-17, November.
- Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
- G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
- Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
- Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
- Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Dedi Rosadi & Shelton Peiris, 2014. "Second-order least-squares estimation for regression models with autocorrelated errors," Computational Statistics, Springer, vol. 29(5), pages 931-943, October.
- Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
- P. Navarro-Esteban & J. A. Cuesta-Albertos, 2021. "High-dimensional outlier detection using random projections," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 908-934, December.
- Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2010. "Detecting influential observations in principal components and common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2967-2975, December.
- Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
- Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
- Erkuş, Ekin Can & Purutçuoğlu, Vilda, 2021. "Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD)," European Journal of Operational Research, Elsevier, vol. 291(2), pages 560-574.
- Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
- Chi-Kuang Yeh & Julie Zhou, 2021. "Properties of optimal regression designs under the second-order least squares estimator," Statistical Papers, Springer, vol. 62(1), pages 75-92, February.
- Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
- Fei Jiang & Yanyuan Ma & J. Jack Lee, 2017. "A second-order semiparametric method for survival analysis, with application to an acquired immune deficiency syndrome clinical trial study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 833-846, August.
- Asuman Turkmen & Nedret Billor, 2013. "Partial least squares classification for high dimensional data using the PCOUT algorithm," Computational Statistics, Springer, vol. 28(2), pages 771-788, April.
- S. Huda & Rahul Mukerjee, 2018. "Optimal designs with string property under asymmetric errors and SLS estimation," Statistical Papers, Springer, vol. 59(3), pages 1255-1268, September.
- Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
More about this item
Keywords
Robust second-order least squares; Regression model; Autocorrelated errors; Ordinary least squares; Generalized least squares;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0829-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.