IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i1d10.1007_s00362-016-0829-9.html
   My bibliography  Save this article

Robust second-order least-squares estimation for regression models with autoregressive errors

Author

Listed:
  • D. Rosadi

    (Gadjah Mada University)

  • P. Filzmoser

    (Vienna University of Technology)

Abstract

Rosadi and Peiris (Comput Stat 29:931–943, 2014) applied the second-order least squares estimator (SLS), which was proposed in Wang and Leblanc (Ann Inst of Stat Math 60:883–900, 2008), to regression models with autoregressive errors. In case of autocorrelated errors, it shows that the SLS performs well for estimating the parameters of the model and gives small bias. For less correlated data, the standard error (SE) of the SLS lies between the SE of the ordinary least squares estimator (OLS) and the generalized least squares estimator, however, for more correlated data, the SLS has higher SE than the OLS estimator. In case of a regression model with iid errors, Chen, Tsao and Zhou (Stat Pap 53:371–386, 2012) proposed a method to improve the robustness of the SLS against X-outliers. In this paper, we consider a new robust second-order least squares estimator (RSLS), which extends the study in Chen et al. (2012) to the case of regression with autoregressive errors, and the data may be contaminated with all types of outliers (X-, y-, and innovation outliers). Besides the regression coefficients, here we also propose a robust method to estimate the parameters of the autoregressive errors and the variance of the errors. We evaluate the performance of the RSLS by means of simulation studies. In the simulation study, we consider both a linear and a nonlinear regression model. The results show that the RSLS performs very well. We also provide guidelines to use the RSLS in practice and present a real example.

Suggested Citation

  • D. Rosadi & P. Filzmoser, 2019. "Robust second-order least-squares estimation for regression models with autoregressive errors," Statistical Papers, Springer, vol. 60(1), pages 105-122, February.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0829-9
    DOI: 10.1007/s00362-016-0829-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0829-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0829-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Chen & Min Tsao & Julie Zhou, 2012. "Robust second-order least-squares estimator for regression models," Statistical Papers, Springer, vol. 53(2), pages 371-386, May.
    2. Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
    3. Liqun Wang & Alexandre Leblanc, 2008. "Second-order nonlinear least squares estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 883-900, December.
    4. Dedi Rosadi & Shelton Peiris, 2014. "Second-order least-squares estimation for regression models with autocorrelated errors," Computational Statistics, Springer, vol. 29(5), pages 931-943, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
    2. Mustafa Salamh & Liqun Wang, 2021. "Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors," Econometrics, MDPI, vol. 9(4), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Salamh & Liqun Wang, 2021. "Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors," Econometrics, MDPI, vol. 9(4), pages 1-17, November.
    2. Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
    3. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    4. Thomas Triebs & Subal C. Kumbhakar, 2012. "Management Practice in Production," ifo Working Paper Series 129, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    5. David E. Tyler & Frank Critchley & Lutz Dümbgen & Hannu Oja, 2009. "Invariant co‐ordinate selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 549-592, June.
    6. Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
    7. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    8. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    9. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    10. Dedi Rosadi & Shelton Peiris, 2014. "Second-order least-squares estimation for regression models with autocorrelated errors," Computational Statistics, Springer, vol. 29(5), pages 931-943, October.
    11. Shieh Albert D & Hung Yeung Sam, 2009. "Detecting Outlier Samples in Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-26, February.
    12. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    13. Cheng Maolin, 2016. "A Generalized Constant Elasticity of Substitution Production Function Model and Its Application," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 269-279, June.
    14. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    15. Heewon Park & Teppei Shimamura & Satoru Miyano & Seiya Imoto, 2014. "Robust Prediction of Anti-Cancer Drug Sensitivity and Sensitivity-Specific Biomarker," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
    16. Alexander A. Aduenko & Anastasia P. Motrenko & Vadim V. Strijov, 2018. "Object selection in credit scoring using covariance matrix of parameters estimations," Annals of Operations Research, Springer, vol. 260(1), pages 3-21, January.
    17. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    18. P. Navarro-Esteban & J. A. Cuesta-Albertos, 2021. "High-dimensional outlier detection using random projections," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 908-934, December.
    19. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2010. "Detecting influential observations in principal components and common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2967-2975, December.
    20. Francesca DE BATTISTI & Silvia SALINI, 2011. "Robust analysis of bibliometric data," Departmental Working Papers 2011-36, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0829-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.