IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v26y2013i4d10.1007_s10878-012-9465-z.html
   My bibliography  Save this article

The density maximization problem in graphs

Author

Listed:
  • Mong-Jen Kao

    (National Taiwan University)

  • Bastian Katz

    (Karlsruhe Institute of Technology (KIT))

  • Marcus Krug

    (Karlsruhe Institute of Technology (KIT))

  • D. T. Lee

    (National Taiwan University)

  • Ignaz Rutter

    (Karlsruhe Institute of Technology (KIT))

  • Dorothea Wagner

    (Karlsruhe Institute of Technology (KIT))

Abstract

We consider a framework for bi-objective network construction problems where one objective is to be maximized while the other is to be minimized. Given a host graph G=(V,E) with edge weights w e ∈ℤ and edge lengths ℓ e ∈ℕ for e∈E we define the density of a pattern subgraph H=(V′,E′)⊆G as the ratio ϱ(H)=∑ e∈E′ w e /∑ e∈E′ ℓ e . We consider the problem of computing a maximum density pattern H under various additional constraints. In doing so, we compute a single Pareto-optimal solution with the best weight per cost ratio subject to additional constraints further narrowing down feasible solutions for the underlying bi-objective network construction problem. First, we consider the problem of computing a maximum density pattern with weight at least W and length at most L in a host G. We call this problem the biconstrained density maximization problem. This problem can be interpreted in terms of maximizing the return on investment for network construction problems in the presence of a limited budget and a target profit. We consider this problem for different classes of hosts and patterns. We show that it is NP-hard, even if the host has treewidth 2 and the pattern is a path. However, it can be solved in pseudo-polynomial linear time if the host has bounded treewidth and the pattern is a graph from a given minor-closed family of graphs. Finally, we present an FPTAS for a relaxation of the density maximization problem, in which we are allowed to violate the upper bound on the length at the cost of some penalty. Second, we consider the maximum density subgraph problem under structural constraints on the vertex set that is used by the patterns. While a maximum density perfect matching can be computed efficiently in general graphs, the maximum density Steiner-subgraph problem, which requires a subset of the vertices in any feasible solution, is NP-hard and unlikely to admit a constant-factor approximation. When parameterized by the number of vertices of the pattern, this problem is W[1]-hard in general graphs. On the other hand, it is FPT on planar graphs if there is no constraint on the pattern and on general graphs if the pattern is a path.

Suggested Citation

  • Mong-Jen Kao & Bastian Katz & Marcus Krug & D. T. Lee & Ignaz Rutter & Dorothea Wagner, 2013. "The density maximization problem in graphs," Journal of Combinatorial Optimization, Springer, vol. 26(4), pages 723-754, November.
  • Handle: RePEc:spr:jcomop:v:26:y:2013:i:4:d:10.1007_s10878-012-9465-z
    DOI: 10.1007/s10878-012-9465-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9465-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9465-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    2. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    3. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    4. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    5. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    6. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    7. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    8. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    9. Eduardo Álvarez-Miranda & Hesso Farhan & Martin Luipersbeck & Markus Sinnl, 2017. "A bi-objective network design approach for discovering functional modules linking Golgi apparatus fragmentation and neuronal death," Annals of Operations Research, Springer, vol. 258(1), pages 5-30, November.
    10. Wang, Honggang, 2017. "Multi-objective retrospective optimization using stochastic zigzag search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 946-960.
    11. Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
    12. Julio B. Clempner, 2018. "Computing multiobjective Markov chains handled by the extraproximal method," Annals of Operations Research, Springer, vol. 271(2), pages 469-486, December.
    13. S. K. Suneja & Sunila Sharma & Priyanka Yadav, 2018. "Generalized higher-order cone-convex functions and higher-order duality in vector optimization," Annals of Operations Research, Springer, vol. 269(1), pages 709-725, October.
    14. Rocha, Rogério Azevedo & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros & Souza, Michael, 2016. "Logarithmic quasi-distance proximal point scalarization method for multi-objective programming," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 856-867.
    15. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    16. Martín Barragán, Belén, 2014. "A projection method for multiobjective multiclass SVM," DES - Working Papers. Statistics and Econometrics. WS ws141107, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Amal Mekhilef & Mustapha Moulaï & Wassila Drici, 2021. "Solving multi-objective integer indefinite quadratic fractional programs," Annals of Operations Research, Springer, vol. 296(1), pages 821-840, January.
    18. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    19. S. K. Suneja & Sunila Sharma & Priyanka Yadav, 2020. "Optimality and duality for vector optimization problem with non-convex feasible set," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 1-12, March.
    20. Thai Doan Chuong & Do Sang Kim, 2016. "A class of nonsmooth fractional multiobjective optimization problems," Annals of Operations Research, Springer, vol. 244(2), pages 367-383, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:26:y:2013:i:4:d:10.1007_s10878-012-9465-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.