IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws141107.html
   My bibliography  Save this paper

A projection method for multiobjective multiclass SVM

Author

Listed:
  • Martín Barragán, Belén

Abstract

Support Vector Machines (SVMs) have become a very popular technique in the machine learning field for classification problems. It was originally proposed for classification of two classes. Various multiclass models with a single objective have been proposed mostly based on two families of methods: an all-together approach and a one-against-all approach. However,most of these single-objective models consider neither the different costs of misclassification nor the user's preferences. To overcome these drawbacks, multiobjective models have been proposed.In this paper we rewrite the different approaches that deal with the multiclass SVM using multiobjective techniques. These multiobjective techniques can give us weakly Pareto-optimal solutions. We propose a multiobjective technique called Projected Multiobjective All-Together(PMAT), which works in a higher-dimension space than the object space. With this technique, we can theoretically characterize the Pareto-optimal solution set. For these multiobjective techniques we get approximate sets of the Pareto-optimal solutions. For these sets, we use hypervolume and epsilon indicators to evaluate different multiobjective techniques. From the experimental results, we can see that (PMAT) outperfoms the other multiobjective techniques. When facing classification problems with very large numbers of classes, we suggest combininga tree method and multiobjective techniques

Suggested Citation

  • Martín Barragán, Belén, 2014. "A projection method for multiobjective multiclass SVM," DES - Working Papers. Statistics and Econometrics. WS ws141107, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws141107
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/87a08716-a00d-4f26-9039-bb18f0b577ea/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    2. Carrizosa, Emilio & Martin-Barragan, Belen, 2006. "Two-group classification via a biobjective margin maximization model," European Journal of Operational Research, Elsevier, vol. 173(3), pages 746-761, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Belen Martin-Barragan, 2011. "Maximizing upgrading and downgrading margins for ordinal regression," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 381-407, December.
    2. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    3. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    4. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    5. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    6. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    7. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    8. Emilio Carrizosa & Frank Plastria, 2008. "Optimal Expected-Distance Separating Halfspace," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 662-677, August.
    9. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    10. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    11. Eduardo Álvarez-Miranda & Hesso Farhan & Martin Luipersbeck & Markus Sinnl, 2017. "A bi-objective network design approach for discovering functional modules linking Golgi apparatus fragmentation and neuronal death," Annals of Operations Research, Springer, vol. 258(1), pages 5-30, November.
    12. Wang, Honggang, 2017. "Multi-objective retrospective optimization using stochastic zigzag search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 946-960.
    13. Julio B. Clempner, 2018. "Computing multiobjective Markov chains handled by the extraproximal method," Annals of Operations Research, Springer, vol. 271(2), pages 469-486, December.
    14. Mong-Jen Kao & Bastian Katz & Marcus Krug & D. T. Lee & Ignaz Rutter & Dorothea Wagner, 2013. "The density maximization problem in graphs," Journal of Combinatorial Optimization, Springer, vol. 26(4), pages 723-754, November.
    15. S. K. Suneja & Sunila Sharma & Priyanka Yadav, 2018. "Generalized higher-order cone-convex functions and higher-order duality in vector optimization," Annals of Operations Research, Springer, vol. 269(1), pages 709-725, October.
    16. Rocha, Rogério Azevedo & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros & Souza, Michael, 2016. "Logarithmic quasi-distance proximal point scalarization method for multi-objective programming," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 856-867.
    17. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    18. Amal Mekhilef & Mustapha Moulaï & Wassila Drici, 2021. "Solving multi-objective integer indefinite quadratic fractional programs," Annals of Operations Research, Springer, vol. 296(1), pages 821-840, January.
    19. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    20. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.

    More about this item

    Keywords

    Multiclass multiobjective SVM;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws141107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.