IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v16y2008i3d10.1007_s10878-007-9126-9.html
   My bibliography  Save this article

Priority algorithms for the subset-sum problem

Author

Listed:
  • Yuli Ye

    (University of Toronto)

  • Allan Borodin

    (University of Toronto)

Abstract

Greedy algorithms are simple, but their relative power is not well understood. The priority framework (Borodin et al. in Algorithmica 37:295–326, 2003) captures a key notion of “greediness” in the sense that it processes (in some locally optimal manner) one data item at a time, depending on and only on the current knowledge of the input. This algorithmic model provides a tool to assess the computational power and limitations of greedy algorithms, especially in terms of their approximability. In this paper, we study priority algorithm approximation ratios for the Subset-Sum Problem, focusing on the power of revocable decisions, for which the accepted data items can be later rejected to maintain the feasibility of the solution. We first provide a tight bound of α≈0.657 for irrevocable priority algorithms. We then show that the approximation ratio of fixed order revocable priority algorithms is between β≈0.780 and γ≈0.852, and the ratio of adaptive order revocable priority algorithms is between 0.8 and δ≈0.893.

Suggested Citation

  • Yuli Ye & Allan Borodin, 2008. "Priority algorithms for the subset-sum problem," Journal of Combinatorial Optimization, Springer, vol. 16(3), pages 198-228, October.
  • Handle: RePEc:spr:jcomop:v:16:y:2008:i:3:d:10.1007_s10878-007-9126-9
    DOI: 10.1007/s10878-007-9126-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-007-9126-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-007-9126-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    2. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    3. Janiak, Adam & Krysiak, Tomasz, 2012. "Scheduling jobs with values dependent on their completion times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 231-241.
    4. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    5. Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
    6. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    7. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
    8. Ruiz-Torres, Alex J. & Lopez, Francisco J. & Ho, Johnny C., 2007. "Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 179(2), pages 302-315, June.
    9. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    10. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    11. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    12. Jaehn, Florian, 2024. "Scheduling with jobs at fixed positions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 388-397.
    13. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    14. Ruiz-Torres, Alex J. & Ho, Johnny C. & Lopez, Francisco J., 2006. "Generating Pareto schedules with outsource and internal parallel resources," International Journal of Production Economics, Elsevier, vol. 103(2), pages 810-825, October.
    15. Nadia Brauner & Gerd Finke & Yakov Shafransky, 2017. "Lawler’s minmax cost problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 31-46, July.
    16. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    17. Jolai, Fariborz, 2005. "Minimizing number of tardy jobs on a batch processing machine with incompatible job families," European Journal of Operational Research, Elsevier, vol. 162(1), pages 184-190, April.
    18. Janiak, Adam & Kovalyov, Mikhail Y., 1996. "Single machine scheduling subject to deadlines and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 94(2), pages 284-291, October.
    19. Briskorn, Dirk & Waldherr, Stefan, 2022. "Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs," European Journal of Operational Research, Elsevier, vol. 301(3), pages 815-827.
    20. Yedidsion, Liron & Shabtay, Dvir & Korach, Ephraim & Kaspi, Moshe, 2009. "A bicriteria approach to minimize number of tardy jobs and resource consumption in scheduling a single machine," International Journal of Production Economics, Elsevier, vol. 119(2), pages 298-307, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:16:y:2008:i:3:d:10.1007_s10878-007-9126-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.