Large-sample results for optimization-based clustering methods
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02616246
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- William Day & Herbert Edelsbrunner, 1985. "Investigation of proportional link linkage clustering methods," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 239-254, December.
- Michael Windham, 1987. "Parameter modification for clustering criteria," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 191-214, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
- Johann Bacher, 2000. "A Probabilistic Clustering Model for Variables of Mixed Type," Quality & Quantity: International Journal of Methodology, Springer, vol. 34(3), pages 223-235, August.
- Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
- Wayne DeSarbo & Duncan Fong & John Liechty & M. Kim Saxton, 2004. "A hierarchical bayesian procedure for two-mode cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 547-572, December.
- Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
- Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
- Alessio Farcomeni & Antonio Punzo, 2020. "Robust model-based clustering with mild and gross outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 989-1007, December.
- Gallegos, María Teresa & Ritter, Gunter, 2013. "Strong consistency of k-parameters clustering," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 14-31.
- Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
- Langevin, R.;, 2024. "Consistent Estimation of Finite Mixtures: An Application to Latent Group Panel Structures," Health, Econometrics and Data Group (HEDG) Working Papers 24/16, HEDG, c/o Department of Economics, University of York.
- Kerekes, Monika, 2009. "Growth miracles and failures in a Markov switching classification model of growth," Discussion Papers 2009/11, Free University Berlin, School of Business & Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bock, Hans H., 1996. "Probabilistic models in cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 5-28, November.
- Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
- Gyllenberg, Mats & Koski, Timo & Verlaan, Martin, 1997. "Classification of Binary Vectors by Stochastic Complexity," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 47-72, October.
More about this item
Keywords
Classification; Clustering; Maximum likelihood; Asymptotic properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:8:y:1991:i:1:p:31-44. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.