IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v37y2020i1d10.1007_s00357-018-9302-x.html
   My bibliography  Save this article

Ordinal Forests

Author

Listed:
  • Roman Hornung

    (University of Munich)

Abstract

The ordinal forest method is a random forest–based prediction method for ordinal response variables. Ordinal forests allow prediction using both low-dimensional and high-dimensional covariate data and can additionally be used to rank covariates with respect to their importance for prediction. An extensive comparison study reveals that ordinal forests tend to outperform competitors in terms of prediction performance. Moreover, it is seen that the covariate importance measure currently used by ordinal forest discriminates influential covariates from noise covariates at least similarly well as the measures used by competitors. Several further important properties of the ordinal forest algorithm are studied in additional investigations. The rationale underlying ordinal forests of using optimized score values in place of the class values of the ordinal response variable is in principle applicable to any regression method beyond random forests for continuous outcome that is considered in the ordinal forest method.

Suggested Citation

  • Roman Hornung, 2020. "Ordinal Forests," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 4-17, April.
  • Handle: RePEc:spr:jclass:v:37:y:2020:i:1:d:10.1007_s00357-018-9302-x
    DOI: 10.1007/s00357-018-9302-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-018-9302-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-018-9302-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.
    2. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lechner, Michael & Okasa, Gabriel, 2019. "Random Forest Estimation of the Ordered Choice Model," Economics Working Paper Series 1908, University of St. Gallen, School of Economics and Political Science.
    2. Riccardo Di Francesco, 2023. "Ordered Correlation Forest," Papers 2309.08755, arXiv.org.
    3. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    4. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    5. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    6. Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," Journal of Development Economics, Elsevier, vol. 169(C).
    7. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
    8. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    9. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    10. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    11. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    12. Eeva-Katri Kumpula & Pauline Norris & Adam C Pomerleau, 2020. "Stocks of paracetamol products stored in urban New Zealand households: A cross-sectional study," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    13. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    14. Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Timo Schulte & Tillmann Wurz & Oliver Groene & Sabine Bohnet-Joschko, 2023. "Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    16. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    17. Fogliato Riccardo & Oliveira Natalia L. & Yurko Ronald, 2021. "TRAP: a predictive framework for the Assessment of Performance in Trail Running," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 129-143, June.
    18. Victor Martínez‐de‐Albéniz & Arnau Planas & Stefano Nasini, 2020. "Using Clickstream Data to Improve Flash Sales Effectiveness," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2508-2531, November.
    19. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    20. Michaël Zamo & Liliane Bel & Olivier Mestre, 2021. "Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 202-225, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:37:y:2020:i:1:d:10.1007_s00357-018-9302-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.