IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v35y2018i3d10.1007_s00357-018-9270-1.html
   My bibliography  Save this article

A Novel Honey-Bees Mating Optimization Approach with Higher order Neural Network for Classification

Author

Listed:
  • Janmenjoy Nayak

    (Sri Sivani College of Engineering)

  • Bighnaraj Naik

    (Veer Surendra Sai University of Technology)

Abstract

In the recent past, several biological and natural phenomena have extensively attracted researchers towards the rapid development of science and engineering. Basically solving the optimization problems in various Engineering discipline is a popular topic among the other problem solving strategies. Most of the biological processes include the swarm intelligence research areas where the activity and the behavior of real insects have been studied. One of the recently developed Swarm algorithms is the Honey Bee Mating Optimization (HBMO) algorithm which is based on the mating behavior of bees. In this work, a hybrid metaheuristic honey bee mating based Pi-Sigma Neural Network (PSNN) have been proposed to successfully solve the classification problem of data mining. The proposed approach combines HBMO with the PSNN and is compared with other techniques like GA (Genetic Algorithm), DE (Differential Evolution), and PSO (Particle Swarm Optimization). Experimental results reveal that the proposed approach is steady as well as reliable and provides better classification accuracy than others.

Suggested Citation

  • Janmenjoy Nayak & Bighnaraj Naik, 2018. "A Novel Honey-Bees Mating Optimization Approach with Higher order Neural Network for Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 511-548, October.
  • Handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9270-1
    DOI: 10.1007/s00357-018-9270-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-018-9270-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-018-9270-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabar, Nasser R. & Ayob, Masri & Kendall, Graham & Qu, Rong, 2012. "A honey-bee mating optimization algorithm for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 533-543.
    2. Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
    3. Vera, David & Carabias, Julio & Jurado, Francisco & Ruiz-Reyes, Nicolás, 2010. "A Honey Bee Foraging approach for optimal location of a biomass power plant," Applied Energy, Elsevier, vol. 87(7), pages 2119-2127, July.
    4. Niknam, Taher & Taheri, Seyed Iman & Aghaei, Jamshid & Tabatabaei, Sajad & Nayeripour, Majid, 2011. "A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4817-4830.
    5. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    6. Guerra, Fábio A. & Coelho, Leandro dos S., 2008. "Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 967-979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    4. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    5. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    6. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    7. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    8. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    9. Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Metaheuristic Algorithm Based on Chemotherapy Science: CSA," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, February.
    10. Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
    11. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2023. "A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks," Energies, MDPI, vol. 16(17), pages 1-38, August.
    12. Arya Yaghoubzadeh-Bavandpour & Omid Bozorg-Haddad & Mohammadreza Rajabi & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Application of Swarm Intelligence and Evolutionary Computation Algorithms for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2275-2292, May.
    13. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    14. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.
    15. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    16. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    17. Francisco J. Ruiz-Rodríguez & Jesús C. Hernández & Francisco Jurado, 2017. "Probabilistic Load-Flow Analysis of Biomass-Fuelled Gas Engines with Electrical Vehicles in Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-23, October.
    18. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.
    19. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 2018. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 20(2), pages 401-416, April.
    20. Zhang, Jin-hua & Liu, Yong-qian & Tian, De & Yan, Jie, 2015. "Optimal power dispatch in wind farm based on reduced blade damage and generator losses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 64-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9270-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.