IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v32y2015i1p21-45.html
   My bibliography  Save this article

Influence Measures for CART Classification Trees

Author

Listed:
  • Avner Bar-Hen
  • Servane Gey
  • Jean-Michel Poggi

Abstract

This paper deals with measuring the influence of observations on the results obtained with CART classification trees. To define the influence of individuals on the analysis, we use influence measures to propose criterions to quantify the sensitivity of the CART classification tree analysis. The proposals are based on predictions and use jackknife trees. The analysis is extended to the pruned sequences of CART trees to produce CART specific notions of influence. Using the framework of influence functions, distributional results are derived. A numerical example, the well known spam dataset, is presented to illustrate the notions developed throughout the paper. A real dataset relating the administrative classification of cities surrounding Paris, France, to the characteristics of their tax revenues distribution, is finally analyzed using the new influence-based tools. Copyright Classification Society of North America 2015

Suggested Citation

  • Avner Bar-Hen & Servane Gey & Jean-Michel Poggi, 2015. "Influence Measures for CART Classification Trees," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 21-45, April.
  • Handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:21-45
    DOI: 10.1007/s00357-015-9172-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-015-9172-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-015-9172-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    2. Norm A. Campbell, 1978. "The Influence Function as an Aid in Outlier Detection in Discriminant Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 251-258, November.
    3. Gey, Servane & Poggi, Jean-Michel, 2006. "Boosting and instability for regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 533-550, January.
    4. Bel, L. & Allard, D. & Laurent, J.M. & Cheddadi, R. & Bar-Hen, A., 2009. "CART algorithm for spatial data: Application to environmental and ecological data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3082-3093, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clayton Gerber Mangini & Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs, 2024. "Risk Prediction Score for Thermal Mapping of Pharmaceutical Transport Routes in Brazil," Logistics, MDPI, vol. 8(3), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    2. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    3. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    4. Steel, S. J. & Louw, N., 2001. "Variable selection in discriminant analysis: measuring the influence of individual cases," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 249-260, August.
    5. Bel, L. & Allard, D. & Laurent, J.M. & Cheddadi, R. & Bar-Hen, A., 2009. "CART algorithm for spatial data: Application to environmental and ecological data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3082-3093, June.
    6. Tsao, C. Andy & Chang, Yuan-chin Ivan, 2007. "A stochastic approximation view of boosting," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 325-334, September.
    7. Kjell Johnson & William Rayens, 2007. "Influence function analysis applied to partial least squares," Computational Statistics, Springer, vol. 22(2), pages 293-306, July.
    8. Tanaka, Yutaka & Zhang, Fanghong & Mori, Yuichi, 2003. "Local influence in principal component analysis: relationship between the local influence and influence function approaches revisited," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 143-160, October.
    9. Hossein Haroonabadi, 2014. "Islanding Detection in Micro-grids using Sum of Voltage and Current Wavelet Coefficients Energy before the Main Circuit Breaker Side," Asian Engineering Review, Asian Online Journal Publishing Group, vol. 1(1), pages 1-12.
    10. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    11. Fung, Wing K., 1995. "Detecting influential observations for estimated probabilities in multiple discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 20(5), pages 557-568, November.
    12. Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018. "Cluster detection and clustering with random start forward searches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
    13. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    14. Peter Verboon & Ivo Lans, 1994. "Robust canonical discriminant analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 485-507, December.
    15. Pires, Ana M. & Branco, João A., 2002. "Partial Influence Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 451-468, November.
    16. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    17. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    18. Poon, Wai-Yin, 2006. "Identifying influential observations in logistic discriminant analysis," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1348-1355, July.
    19. Croux, Christophe & Joossens, Kristel & Lemmens, Aurelie, 2007. "Trimmed bagging," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 362-368, September.
    20. Antonio D’Ambrosio & Massimo Aria & Roberta Siciliano, 2012. "Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 227-258, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:21-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.