IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v30y2013i3p338-369.html
   My bibliography  Save this article

Model Selection for the Trend Vector Model

Author

Listed:
  • Hsiu-Ting Yu
  • Mark Rooij

Abstract

Model selection is an important component of data analysis. This study focuses on issues of model selection for the trend vector model, a model for the analysis of longitudinal multinomial outcomes. The trend vector model is a so-called marginal model, focusing on population averaged evolutions over time. A quasi-likelihood method is employed to obtain parameter estimates. Such an optimization function in theory invalidates likelihood-based statistics, such as the likelihood ratio statistic. Moreover, standard errors obtained from the Hessian are biased. In this paper, the performances of different model selection methods for the trend vector model are studied in detail. We specifically focused on two aspects of model selection: variable selection and dimensionality determination. Based on the quasi-likelihood function, selection criteria analogous to the likelihood ratio statistics, AIC and BIC, were employed. Additionally, Wald and resampling statistics were included as variable selection criteria. A series of simulations were carried out to evaluate the relative performance of these criteria. The results suggest that model selection can be best performed using either the quasi likelihood ratio statistic or the quasi-BIC. A special study on dimensionality selection found that the quasi-AIC also performs well for cases with degrees of freedom greater than 8. Another important finding is that the sandwich estimator for standard errors used in Wald statistics does not perform well. Even for larger sample sizes, the bias-correction procedure for the sandwich estimator is needed to give satisfactory results. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Hsiu-Ting Yu & Mark Rooij, 2013. "Model Selection for the Trend Vector Model," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 338-369, October.
  • Handle: RePEc:spr:jclass:v:30:y:2013:i:3:p:338-369
    DOI: 10.1007/s00357-013-9138-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-013-9138-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-013-9138-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael P. Fay & Barry I. Graubard, 2001. "Small-Sample Adjustments for Wald-Type Tests Using Sandwich Estimators," Biometrics, The International Biometric Society, vol. 57(4), pages 1198-1206, December.
    2. de Rooij, Mark, 2009. "Trend vector models for the analysis of change in continuous time for multiple groups," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3209-3216, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blasius, J. & Greenacre, M. & Groenen, P.J.F. & van de Velden, M., 2009. "Special issue on correspondence analysis and related methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3103-3106, June.
    2. Barry I. Graubard & Thomas R. Fears, 2005. "Standard Errors for Attributable Risk for Simple and Complex Sample Designs," Biometrics, The International Biometric Society, vol. 61(3), pages 847-855, September.
    3. Alexander Robitzsch, 2023. "Linking Error in the 2PL Model," J, MDPI, vol. 6(1), pages 1-27, January.
    4. Ji-Hyun Lee & Michael J Schell & Richard Roetzheim, 2009. "Analysis of Group Randomized Trials with Multiple Binary Endpoints and Small Number of Groups," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
    5. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.
    6. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    7. Masahiko Gosho & Hisashi Noma & Kazushi Maruo, 2021. "Practical Review and Comparison of Modified Covariance Estimators for Linear Mixed Models in Small‐sample Longitudinal Studies with Missing Data," International Statistical Review, International Statistical Institute, vol. 89(3), pages 550-572, December.
    8. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    9. Bing Lu & John S. Preisser & Bahjat F. Qaqish & Chirayath Suchindran & Shrikant I. Bangdiwala & Mark Wolfson, 2007. "A Comparison of Two Bias-Corrected Covariance Estimators for Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 63(3), pages 935-941, September.
    10. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "On Bayesian estimation of marginal structural models," Biometrics, The International Biometric Society, vol. 71(2), pages 279-288, June.
    11. Tang, Nian-Sheng & Tang, Man-Lai & Qiu, Shi-Fang, 2008. "Testing the equality of proportions for correlated otolaryngologic data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3719-3729, March.
    12. Slawa Rokicki & Jessica Cohen & Gunther Fink & Joshua Salomon & Mary Beth Landrum, 2018. "Inference with difference-in-differences with a small number of groups: a review, simulation study and empirical application using SHARE data," CHaRMS Working Papers 18-01, Centre for HeAlth Research at the Management School (CHaRMS).
    13. Steven Teerenstra & Bing Lu & John S. Preisser & Theo van Achterberg & George F. Borm, 2010. "Sample Size Considerations for GEE Analyses of Three-Level Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1230-1237, December.
    14. Philip M. Westgate & Woodrow W. Burchett, 2017. "A Comparison of Correlation Structure Selection Penalties for Generalized Estimating Equations," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 344-353, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:30:y:2013:i:3:p:338-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.