IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p3209-3216.html
   My bibliography  Save this article

Trend vector models for the analysis of change in continuous time for multiple groups

Author

Listed:
  • de Rooij, Mark

Abstract

A problem with the modeling of repeated multinomial response data is the dimensionality of the response variable. For reducing this dimensionality and enhancing interpretability multidimensional scaling techniques are utilized. The resulting trend vector model provides an easily interpretable graphical display with trajectories of different groups over time. A generalized estimating equations scheme is employed for obtaining estimates of the parameters. Model selection is based on the Bayesian Information Criterion and the bootstrap. For illustration, the model is applied to a data set.

Suggested Citation

  • de Rooij, Mark, 2009. "Trend vector models for the analysis of change in continuous time for multiple groups," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3209-3216, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3209-3216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00463-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berrie Zielman & Willem Heiser, 1993. "Analysis of asymmetry by a slide-vector," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 101-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blasius, J. & Greenacre, M. & Groenen, P.J.F. & van de Velden, M., 2009. "Special issue on correspondence analysis and related methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3103-3106, June.
    2. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    3. Hsiu-Ting Yu & Mark Rooij, 2013. "Model Selection for the Trend Vector Model," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 338-369, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    2. Atsuho Nakayama & Daniel Baier, 2020. "Predicting brand confusion in imagery markets based on deep learning of visual advertisement content," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 927-945, December.
    3. Gower, John C., 2000. "Rank-one and rank-two departures from symmetry," Computational Statistics & Data Analysis, Elsevier, vol. 33(2), pages 177-188, April.
    4. Herden, Gerhard & Pallack, Andreas, 2005. "Adequateness and interpretability of objective functions in ordinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 19-69, May.
    5. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3209-3216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.