IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v22y1976i6p652-663.html
   My bibliography  Save this article

An Interactive Programming Method for Solving the Multiple Criteria Problem

Author

Listed:
  • Stanley Zionts

    (European Institute for Advanced Studies in Management and School of Management, State University of New York at Buffalo)

  • Jyrki Wallenius

    (European Institute for Advanced Studies in Management and the Helsinki School of Economics and Business Administration)

Abstract

In this paper a man-machine interactive mathematical programming method is presented for solving the multiple criteria problem involving a single decision maker. It is assumed that all decision-relevant criteria or objective functions are concave functions to be maximized, and that the constraint set is convex. The overall utility function is assumed to be unknown explicitly to the decision maker, but is assumed to be implicitly a linear function, and more generally a concave function of the objective functions. To solve a problem involving multiple objectives the decision maker is requested to provide answers to yes and no questions regarding certain trade offs that he likes or dislikes. Convergence of the method is proved; a numerical example is presented. Tests of the method as well as an extension of the method for solving integer linear programming problems are also described.

Suggested Citation

  • Stanley Zionts & Jyrki Wallenius, 1976. "An Interactive Programming Method for Solving the Multiple Criteria Problem," Management Science, INFORMS, vol. 22(6), pages 652-663, February.
  • Handle: RePEc:inm:ormnsc:v:22:y:1976:i:6:p:652-663
    DOI: 10.1287/mnsc.22.6.652
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.22.6.652
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.22.6.652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:22:y:1976:i:6:p:652-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.