IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v89y1996i3p462-472.html
   My bibliography  Save this article

InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem

Author

Listed:
  • Sun, Minghe
  • Steuer, Ralph E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sun, Minghe & Steuer, Ralph E., 1996. "InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem," European Journal of Operational Research, Elsevier, vol. 89(3), pages 462-472, March.
  • Handle: RePEc:eee:ejores:v:89:y:1996:i:3:p:462-472
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(94)00228-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zionts, Stanley, 1981. "A multiple criteria method for choosing among discrete alternatives," European Journal of Operational Research, Elsevier, vol. 7(2), pages 143-147, June.
    2. Vincke, Philippe, 1986. "Analysis of multicriteria decision aid in Europe," European Journal of Operational Research, Elsevier, vol. 25(2), pages 160-168, May.
    3. Ralph E. Steuer & Joe Silverman & Alan W. Whisman, 1993. "A Combined Tchebycheff/Aspiration Criterion Vector Interactive Multiobjective Programming Procedure," Management Science, INFORMS, vol. 39(10), pages 1255-1260, October.
    4. Pekka Korhonen & Jyrki Wallenius & Stanley Zionts, 1984. "Solving the Discrete Multiple Criteria Problem using Convex Cones," Management Science, INFORMS, vol. 30(11), pages 1336-1345, November.
    5. Minghe Sun & Ralph E. Steuer, 1996. "Quad-Trees and Linear Lists for Identifying Nondominated Criterion Vectors," INFORMS Journal on Computing, INFORMS, vol. 8(4), pages 367-375, November.
    6. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1984. "Prométhée: a new family of outranking methods in multicriteria analysis," ULB Institutional Repository 2013/9305, ULB -- Universite Libre de Bruxelles.
    7. Korhonen, Pekka & Laakso, Jukka, 1986. "Solving generalized goal programming problems using a visual interactive approach," European Journal of Operational Research, Elsevier, vol. 26(3), pages 355-363, September.
    8. Korhonen, Pekka, 1988. "A visual reference direction approach to solving discrete multiple criteria problems," European Journal of Operational Research, Elsevier, vol. 34(2), pages 152-159, March.
    9. Korhonen, Pekka J. & Laakso, Jukka, 1986. "A visual interactive method for solving the multiple criteria problem," European Journal of Operational Research, Elsevier, vol. 24(2), pages 277-287, February.
    10. Stanley Zionts & Jyrki Wallenius, 1976. "An Interactive Programming Method for Solving the Multiple Criteria Problem," Management Science, INFORMS, vol. 22(6), pages 652-663, February.
    11. Murat Köksalan & Mark H. Karwan & Stanley Zionts, 1988. "An approach for solving discrete alternative multiple criteria problems involving ordinal criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 625-641, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    2. Minghe Sun, 2006. "A primogenitary linked quad tree data structure and its application to discrete multiple criteria optimization," Annals of Operations Research, Springer, vol. 147(1), pages 87-107, October.
    3. Minghe Sun, 2007. "A Primogenitary Linked Quad Tree Approach for Solution Storage and Retrieval in Heuristic Binary Optimization," Working Papers 0009, College of Business, University of Texas at San Antonio.
    4. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    5. Jaszkiewicz, Andrzej, 2004. "On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study," European Journal of Operational Research, Elsevier, vol. 158(2), pages 418-433, October.
    6. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    7. Nowak, Maciej, 2006. "INSDECM--an interactive procedure for stochastic multicriteria decision problems," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1413-1430, December.
    8. Scholz, Michael & Dorner, Verena & Schryen, Guido & Benlian, Alexander, 2017. "A configuration-based recommender system for supporting e-commerce decisions," European Journal of Operational Research, Elsevier, vol. 259(1), pages 205-215.
    9. Sun, Minghe, 2011. "A primogenitary linked quad tree approach for solution storage and retrieval in heuristic binary optimization," European Journal of Operational Research, Elsevier, vol. 209(3), pages 228-240, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    2. Asim Roy & Patrick Mackin & Jyrki Wallenius & James Corner & Mark Keith & Gregory Schymik & Hina Arora, 2008. "An Interactive Search Method Based on User Preferences," Decision Analysis, INFORMS, vol. 5(4), pages 203-229, December.
    3. P. Korhonen & J. Karaivanova, 1998. "An Algorithm for Projecting a Reference Direction onto the Nondominated Set of Given Points," Working Papers ir98011, International Institute for Applied Systems Analysis.
    4. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    5. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    6. Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.
    7. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    8. Xiaoping Li & Dan Zhu, 2011. "Object technology software selection: a case study," Annals of Operations Research, Springer, vol. 185(1), pages 5-24, May.
    9. Korhonen, Pekka & Soleimani-damaneh, Majid & Wallenius, Jyrki, 2016. "Dual cone approach to convex-cone dominance in multiple criteria decision making," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1139-1143.
    10. Ishizaka, Alessio & Siraj, Sajid, 2018. "Are multi-criteria decision-making tools useful? An experimental comparative study of three methods," European Journal of Operational Research, Elsevier, vol. 264(2), pages 462-471.
    11. Lahdelma, Risto & Salminen, Pekka & Kuula, Markku, 2003. "Testing the efficiency of two pairwise comparison methods in discrete multiple criteria problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 496-508, March.
    12. Lee, Dong-Hee & Kim, Kwang-Jae & Köksalan, Murat, 2011. "A posterior preference articulation approach to multiresponse surface optimization," European Journal of Operational Research, Elsevier, vol. 210(2), pages 301-309, April.
    13. Kalu, Timothy Ch. U., 1999. "An algorithm for systems welfare interactive goal programming modelling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 508-529, August.
    14. Sun, Minghe, 2005. "Some issues in measuring and reporting solution quality of interactive multiple objective programming procedures," European Journal of Operational Research, Elsevier, vol. 162(2), pages 468-483, April.
    15. M Köksalan & E Karasakal, 2006. "An interactive approach for multiobjective decision making," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 532-540, May.
    16. Rafael Lazimy, 2013. "Interactive Polyhedral Outer Approximation (IPOA) strategy for general multiobjective optimization problems," Annals of Operations Research, Springer, vol. 210(1), pages 73-99, November.
    17. Pekka Korhonen & Jyrki Wallenius, 1988. "A pareto race," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 615-623, December.
    18. Korhonen, Pekka J. & Wallenius, Jyrki & Genc, Tolga & Xu, Peng, 2021. "On rational behavior in multi-attribute riskless choice," European Journal of Operational Research, Elsevier, vol. 288(1), pages 331-342.
    19. Caballero, Rafael & Ruiz, Francisco & Uria, M. Victoria Rodriguez & Romero, Carlos, 2006. "Interactive meta-goal programming," European Journal of Operational Research, Elsevier, vol. 175(1), pages 135-154, November.
    20. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:89:y:1996:i:3:p:462-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.