IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i1p248-262.html
   My bibliography  Save this article

Interactive algorithms for a broad underlying family of preference functions

Author

Listed:
  • Karakaya, G.
  • Köksalan, M.
  • Ahipaşaoğlu, S.D.

Abstract

In multi-criteria decision making approaches it is typical to consider an underlying preference function that is assumed to represent the decision maker’s preferences. In this paper we introduce a broad family of preference functions that can represent a wide variety of preference structures. We develop the necessary theory and interactive algorithms for both the general family of the preference functions and for its special cases. The algorithms guarantee to find the most preferred solution (point) of the decision maker under the assumed conditions. The convergence of the algorithms are achieved by progressively reducing the solution space based on the preference information obtained from the decision maker and the properties of the assumed underlying preference functions. We first demonstrate the algorithms on a simple bi-criteria problem with a given set of available points. We also test the performances of the algorithms on three-criteria knapsack problems and show that they work well.

Suggested Citation

  • Karakaya, G. & Köksalan, M. & Ahipaşaoğlu, S.D., 2018. "Interactive algorithms for a broad underlying family of preference functions," European Journal of Operational Research, Elsevier, vol. 265(1), pages 248-262.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:248-262
    DOI: 10.1016/j.ejor.2017.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zionts, Stanley, 1981. "A multiple criteria method for choosing among discrete alternatives," European Journal of Operational Research, Elsevier, vol. 7(2), pages 143-147, June.
    2. Stanley Zionts & Jyrki Wallenius, 1980. "Identifying Efficient Vectors: Some Theory and Computational Results," Operations Research, INFORMS, vol. 28(3-part-ii), pages 785-793, June.
    3. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    4. Gülşah Karakaya & Murat Köksalan, 2016. "An interactive approach for Bi-attribute multi-item auctions," Annals of Operations Research, Springer, vol. 245(1), pages 97-119, October.
    5. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    6. Pekka Korhonen & Jyrki Wallenius & Stanley Zionts, 1984. "Solving the Discrete Multiple Criteria Problem using Convex Cones," Management Science, INFORMS, vol. 30(11), pages 1336-1345, November.
    7. Banu Lokman & Murat Köksalan, 2014. "Finding highly preferred points for multi-objective integer programs," IISE Transactions, Taylor & Francis Journals, vol. 46(11), pages 1181-1195, November.
    8. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    9. Bilge Bozkurt & John W. Fowler & Esma S. Gel & Bosun Kim & Murat Köksalan & Jyrki Wallenius, 2010. "Quantitative Comparison of Approximate Solution Sets for Multicriteria Optimization Problems with Weighted Tchebycheff Preference Function," Operations Research, INFORMS, vol. 58(3), pages 650-659, June.
    10. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan Helfrich & Kathrin Prinz & Stefan Ruzika, 2024. "The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1187-1216, September.
    2. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    3. Karakaya, G. & Köksalan, M., 2021. "Evaluating solutions and solution sets under multiple objectives," European Journal of Operational Research, Elsevier, vol. 294(1), pages 16-28.
    4. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.
    5. Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    2. Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.
    3. Ishizaka, Alessio & Siraj, Sajid, 2018. "Are multi-criteria decision-making tools useful? An experimental comparative study of three methods," European Journal of Operational Research, Elsevier, vol. 264(2), pages 462-471.
    4. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    5. Kaynar, Nur & Karsu, Özlem, 2018. "Equitable decision making approaches over allocations of multiple benefits to multiple entities," Omega, Elsevier, vol. 81(C), pages 85-98.
    6. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    7. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    8. Deparis, Stéphane & Mousseau, Vincent & Öztürk, Meltem & Huron, Caroline, 2015. "The effect of bi-criteria conflict on matching-elicited preferences," European Journal of Operational Research, Elsevier, vol. 242(3), pages 951-959.
    9. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    10. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2012. "Selection of a representative value function in robust multiple criteria ranking and choice," European Journal of Operational Research, Elsevier, vol. 217(3), pages 541-553.
    11. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    12. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    13. Halme, Merja & Korhonen, Pekka & Eskelinen, Juha, 2014. "Non-convex value efficiency analysis and its application to bank branch sales evaluation," Omega, Elsevier, vol. 48(C), pages 10-18.
    14. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    15. Bous, Géraldine & Fortemps, Philippe & Glineur, François & Pirlot, Marc, 2010. "ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements," European Journal of Operational Research, Elsevier, vol. 206(2), pages 435-444, October.
    16. Karakaya, G. & Köksalan, M., 2021. "Evaluating solutions and solution sets under multiple objectives," European Journal of Operational Research, Elsevier, vol. 294(1), pages 16-28.
    17. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    18. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    19. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    20. Xiaoping Li & Dan Zhu, 2011. "Object technology software selection: a case study," Annals of Operations Research, Springer, vol. 185(1), pages 5-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:248-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.