IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v87y2017i1d10.1007_s11573-016-0829-1.html
   My bibliography  Save this article

Analyzing investment strategies under changing energy and climate policies: an interdisciplinary bottom-up approach regarding German metal industries

Author

Listed:
  • Patrick Breun

    (French-German Institute for Environmental Research (DFIU), Karlsruhe Institute of Technology (KIT))

  • Magnus Fröhling

    (Technische Universität Bergakademie Freiberg)

  • Konrad Zimmer

    (French-German Institute for Environmental Research (DFIU), Karlsruhe Institute of Technology (KIT))

  • Frank Schultmann

    (French-German Institute for Environmental Research (DFIU), Karlsruhe Institute of Technology (KIT))

Abstract

German metal producers face an intense international competition. The comparably high domestic energy and production costs additionally challenge the producers. Beside this, German energy intensive industries (GEII) are embedded in a complex regulatory framework induced by energy and climate policies. These policies consist of different economic political instruments which are regularly changed to incentivize greenhouse gas (GHG) emission reductions. Therefore, future investment decisions in energy efficiency increasing technologies (EEIT) have to be evaluated dependent on these changing political conditions. Thus, actors in the metal industry need decision support in developing sustainable investment strategies which withstand different political developments. Given these circumstances, we develop an actor-oriented simulation model which simulates the optimal future investment decisions of all German iron, steel and aluminum producing plants under different political conditions based on a detailed plant-specific technical process description. Thereby, economic and engineering parameters are combined in an interdisciplinary approach to derive future investment strategies for the metal producing plants facing probable political changes. This approach closes the scientific gap between top-down oriented studies which usually are not capable of representing detailed plant-specific aspects and solely technical oriented studies which are often limited to a single plant or facility.

Suggested Citation

  • Patrick Breun & Magnus Fröhling & Konrad Zimmer & Frank Schultmann, 2017. "Analyzing investment strategies under changing energy and climate policies: an interdisciplinary bottom-up approach regarding German metal industries," Journal of Business Economics, Springer, vol. 87(1), pages 5-39, January.
  • Handle: RePEc:spr:jbecon:v:87:y:2017:i:1:d:10.1007_s11573-016-0829-1
    DOI: 10.1007/s11573-016-0829-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-016-0829-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-016-0829-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    2. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    3. Fröhling, Magnus & Schwaderer, Frank & Bartusch, Hauke & Rentz, Otto, 2010. "Integrated planning of transportation and recycling for multiple plants based on process simulation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 958-970, December.
    4. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    5. Hare, M & Deadman, P, 2004. "Further towards a taxonomy of agent-based simulation models in environmental management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 25-40.
    6. Ackerman, Frank & Munitz, Charles, 2012. "Climate damages in the FUND model: A disaggregated analysis," Ecological Economics, Elsevier, vol. 77(C), pages 219-224.
    7. Alberth, Stephan & Hope, Chris, 2007. "Climate modelling with endogenous technical change: Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model," Energy Policy, Elsevier, vol. 35(3), pages 1795-1807, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2023. "A consequential approach to life cycle sustainability assessment with an agent‐based model to determine the potential contribution of chemical recycling to UN Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 726-745, June.
    2. Andreas Schiessl & Richard Müller & Rebekka Volk & Konrad Zimmer & Patrick Breun & Frank Schultmann, 2020. "Integrating site-specific environmental impact assessment in supplier selection: exemplary application to steel procurement," Journal of Business Economics, Springer, vol. 90(9), pages 1409-1457, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    3. Marc Vielle & Alain L. Bernard, 1998. "Un exemple d'utilisation : le coût de politiques de réduction des gaz à effet de serre," Économie et Prévision, Programme National Persée, vol. 136(5), pages 33-48.
    4. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    5. Shiran Victoria Shen, 2021. "Integrating Political Science into Climate Modeling: An Example of Internalizing the Costs of Climate-Induced Violence in the Optimal Management of the Climate," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    6. Erica Perego & Lionel Fontagné & Gianluca Santoni, 2022. "MaGE 3.1: Long-term macroeconomic projections of the World economy," International Economics, CEPII research center, issue 172, pages 168-189.
    7. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    8. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    9. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    10. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    12. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    13. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    14. Frankel, Jeffrey A. & Bosetti, Valentina, 2011. "Politically Feasible Emission Target Formulas to Attain 460 ppm CO[subscript 2] Concentrations," Working Paper Series rwp11-016, Harvard University, John F. Kennedy School of Government.
    15. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    16. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    17. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    18. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    19. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    20. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.

    More about this item

    Keywords

    Energy intensive industries; Metal industry; Climate policy; Bottom-up approach; Investment decision; Greenhouse gas emissions;
    All these keywords.

    JEL classification:

    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:87:y:2017:i:1:d:10.1007_s11573-016-0829-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.