IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v24y2019i1d10.1007_s13253-018-00344-0.html
   My bibliography  Save this article

Modeling and Prediction of Multiple Correlated Functional Outcomes

Author

Listed:
  • Jiguo Cao

    (Simon Fraser University)

  • Kunlaya Soiaporn

    (Capital One)

  • Raymond J. Carroll

    (Texas A&M University
    University of Technology Sydney)

  • David Ruppert

    (Cornell University)

Abstract

We propose a copula-based approach for analyzing functional data with correlated multiple functional outcomes exhibiting heterogeneous shape characteristics. To accommodate the possibly large number of parameters due to having several functional outcomes, parameter estimation is performed in two steps: first, the parameters for the marginal distributions are estimated using the skew t family, and then the dependence structure both within and across outcomes is estimated using a Gaussian copula. We develop an estimation algorithm for the dependence parameters based on the Karhunen–Loève expansion and an EM algorithm that significantly reduces the dimension of the problem and is computationally efficient. We also demonstrate prediction of an unknown outcome when the other outcomes are known. We apply our methodology to diffusion tensor imaging data for multiple sclerosis (MS) patients with three outcomes and identify differences in both the marginal distributions and the dependence structure between the MS and control groups. Our proposed methodology is quite general and can be applied to other functional data with multiple outcomes in biology and other fields. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Jiguo Cao & Kunlaya Soiaporn & Raymond J. Carroll & David Ruppert, 2019. "Modeling and Prediction of Multiple Correlated Functional Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 112-129, March.
  • Handle: RePEc:spr:jagbes:v:24:y:2019:i:1:d:10.1007_s13253-018-00344-0
    DOI: 10.1007/s13253-018-00344-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-018-00344-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-018-00344-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiguo Cao & Liangliang Wang & Zhongwen Huang & Junyi Gai & Rongling Wu, 2017. "Functional Mapping of Multiple Dynamic Traits," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 60-75, March.
    2. Haocheng Li & John Staudenmayer & Raymond J. Carroll, 2014. "Hierarchical functional data with mixed continuous and binary measurements," Biometrics, The International Biometric Society, vol. 70(4), pages 802-811, December.
    3. Ana-Maria Staicu & Ciprian M. Crainiceanu & Daniel S. Reich & David Ruppert, 2012. "Modeling Functional Data with Spatially Heterogeneous Shape Characteristics," Biometrics, The International Biometric Society, vol. 68(2), pages 331-343, June.
    4. Lan Zhou & Jianhua Z. Huang & Raymond J. Carroll, 2008. "Joint modelling of paired sparse functional data using principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 601-619.
    5. Dubin, Joel A. & Muller, Hans-Georg, 2005. "Dynamical Correlation for Multivariate Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 872-881, September.
    6. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Shin, Hyejin & Lee, Seokho, 2015. "Canonical correlation analysis for irregularly and sparsely observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 1-18.
    4. Cody Carroll & Hans‐Georg Müller & Alois Kneip, 2021. "Cross‐component registration for multivariate functional data, with application to growth curves," Biometrics, The International Biometric Society, vol. 77(3), pages 839-851, September.
    5. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    6. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    7. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
    8. Chen, Qihao & Huang, Zhuo & Liang, Fang, 2023. "Measuring systemic risk with high-frequency data: A realized GARCH approach," Finance Research Letters, Elsevier, vol. 54(C).
    9. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    10. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    11. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    12. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    13. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    14. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    15. Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
    16. Zangin Zeebari & Ghazi Shukur, 2023. "On The Least Absolute Deviations Method for Ridge Estimation of Sure Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(14), pages 4773-4791, July.
    17. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    18. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    19. Xu, Wenjing & Pan, Qing & Gastwirth, Joseph L., 2014. "Cox proportional hazards models with frailty for negatively correlated employment processes," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 295-307.
    20. Mitchell, James & Weale, Martin, 2019. "Forecasting with Unknown Unknowns: Censoring and Fat Tails on the Bank of England's Monetary Policy Committee," EMF Research Papers 27, Economic Modelling and Forecasting Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:24:y:2019:i:1:d:10.1007_s13253-018-00344-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.