IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p426-436.html
   My bibliography  Save this article

An individual level infectious disease model in the presence of uncertainty from multiple, imperfect diagnostic tests

Author

Listed:
  • Caitlin Ward
  • Grant D. Brown
  • Jacob J. Oleson

Abstract

Bayesian compartmental infectious disease models yield important inference on disease transmission by appropriately accounting for the dynamics and uncertainty of infection processes. In addition to estimating transition probabilities and reproductive numbers, these statistical models allow researchers to assess the probability of disease risk and quantify the effectiveness of interventions. These infectious disease models rely on data collected from all individuals classified as positive based on various diagnostic tests. In infectious disease testing, however, such procedures produce both false‐positives and false‐negatives at varying rates depending on the sensitivity and specificity of the diagnostic tests being used. We propose a novel Bayesian spatio‐temporal infectious disease modeling framework that accounts for the additional uncertainty in the diagnostic testing and classification process that provides estimates of the important transmission dynamics of interest to researchers. The method is applied to data on the 2006 mumps epidemic in Iowa, in which over 6,000 suspected mumps cases were tested using a buccal or oral swab specimen, a urine specimen, and/or a blood specimen. Although all procedures are believed to have high specificities, the sensitivities can be low and vary depending on the timing of the test as well as the vaccination status of the individual being tested.

Suggested Citation

  • Caitlin Ward & Grant D. Brown & Jacob J. Oleson, 2023. "An individual level infectious disease model in the presence of uncertainty from multiple, imperfect diagnostic tests," Biometrics, The International Biometric Society, vol. 79(1), pages 426-436, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:426-436
    DOI: 10.1111/biom.13579
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13579
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron T. Porter & Jacob J. Oleson, 2013. "A Path-Specific SEIR Model for use with General Latent and Infectious Time Distributions," Biometrics, The International Biometric Society, vol. 69(1), pages 101-108, March.
    2. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    3. Rajat Malik & Rob Deardon & Grace P.S. Kwong & Benjamin J. Cowling, 2014. "Individual-level modeling of the spread of influenza within households," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1578-1592, July.
    4. Marios P. Georgiadis & Wesley O. Johnson & Ian A. Gardner & Ramanpreet Singh, 2003. "Correlation‐adjusted estimation of sensitivity and specificity of two diagnostic tests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 63-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    2. Adam J. Branscum & Dunlei Cheng & J. Jack Lee, 2015. "Testing hypotheses about medical test accuracy: considerations for design and inference," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1106-1119, May.
    3. Geoffrey Jones & Wesley O. Johnson, 2016. "A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 314-327, June.
    4. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    5. Pierre Bessière & Brandon Hayes & Fabien Filaire & Laetitia Lèbre & Timothée Vergne & Matthieu Pinson & Guillaume Croville & Jean-Luc Guerin, 2023. "Optimizing environmental viral surveillance: bovine serum albumin increases RT-qPCR sensitivity for high pathogenicity avian influenza H5Nx virus detection from dust samples," Post-Print hal-04335181, HAL.
    6. Geoffrey Jones & Wesley O. Johnson & Timothy E. Hanson & Ronald Christensen, 2010. "Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 66(3), pages 855-863, September.
    7. Nandini Dendukuri & Ian Schiller & Lawrence Joseph & Madhukar Pai, 2012. "Bayesian Meta-Analysis of the Accuracy of a Test for Tuberculous Pleuritis in the Absence of a Gold Standard Reference," Biometrics, The International Biometric Society, vol. 68(4), pages 1285-1293, December.
    8. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    9. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    10. Fabio Principato & Angela Vullo & Domenica Matranga, 2010. "On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1335-1354.
    11. Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
    12. Rajat Malik & Rob Deardon & Grace P S Kwong, 2016. "Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-23, January.
    13. Carol Y. Lin & Lance A. Waller & Robert H. Lyles, 2012. "The likelihood approach for the comparison of medical diagnostic system with multiple binary tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1437-1454, December.
    14. Min Zhang & Chong Wang & Annette O’Connor, 2021. "A Bayesian approach to modeling antimicrobial multidrug resistance," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-14, December.
    15. Xin Xia & Hui-Ping Zhu & Chuan-Hua Yu & Xing-Jian Xu & Ren-Dong Li & Juan Qiu, 2013. "A Bayesian Approach to Estimate the Prevalence of Schistosomiasis japonica Infection in the Hubei Province Lake Regions, China," IJERPH, MDPI, vol. 10(7), pages 1-14, July.
    16. Leandro García Barrado & Els Coart & Tomasz Burzykowski, 2017. "Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test," Biometrics, The International Biometric Society, vol. 73(2), pages 646-655, June.
    17. Elizabeth R. Brown, 2010. "Bayesian Estimation of the Time-Varying Sensitivity of a Diagnostic Test with Application to Mother-to-Child Transmission of HIV," Biometrics, The International Biometric Society, vol. 66(4), pages 1266-1274, December.
    18. Scott Weichenthal & Lawrence Joseph & Patrick Bélisle & André Dufresne, 2010. "Bayesian Estimation of the Probability of Asbestos Exposure from Lung Fiber Counts," Biometrics, The International Biometric Society, vol. 66(2), pages 603-612, June.
    19. Nandini Dendukuri & Elham Rahme & Patrick Bélisle & Lawrence Joseph, 2004. "Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test," Biometrics, The International Biometric Society, vol. 60(2), pages 388-397, June.
    20. Shahieda Adams & Rodney Ehrlich & Roslynn Baatjies & Nandini Dendukuri & Zhuoyu Wang & Keertan Dheda, 2019. "Evaluating Latent Tuberculosis Infection Test Performance Using Latent Class Analysis in a TB and HIV Endemic Setting," IJERPH, MDPI, vol. 16(16), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:426-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.