IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v7y2005i4d10.1007_s10796-005-4812-6.html
   My bibliography  Save this article

e-CLV: A Modeling Approach for Customer Lifetime Evaluation in e-Commerce Domains, with an Application and Case Study for Online Auction

Author

Listed:
  • Opher Etzion

    (IBM Research)

  • Amit Fisher

    (IBM Research)

  • Segev Wasserkrug

    (IBM Research)

Abstract

e-Commerce companies acknowledge that customers are their most important asset and that it is imperative to estimate the potential value of this asset. In conventional marketing, one of the widely accepted methods for evaluating customer value uses models known as Customer Lifetime Value (CLV). However, these existing models suffer from two major shortcomings: They either do not take into account significant attributes of customer behavior unique to e-Commerce, or they do not provide a method for generating specific models from the large body of relevant historical data that can be easily collected in e-Commerce sites. This paper describes a general modeling approach, based on Markov Chain Models, for calculating customer value in the e-Commerce domain. This approach extends existing CLV models, by taking into account a new set of variables required for evaluating customers value in an e-Commerce environment. In addition, we describe how data-mining algorithms can aid in deriving such a model, thereby taking advantage of the historical customer data available in such environments. We then present an application of this modeling approach—the creation of a model for online auctions—one of the fastest-growing and most lucrative types of e-Commerce. The article also describes a case study, which demonstrates how our model provides more accurate predictions than existing conventional CLV models regarding the future income generated by customers.

Suggested Citation

  • Opher Etzion & Amit Fisher & Segev Wasserkrug, 2005. "e-CLV: A Modeling Approach for Customer Lifetime Evaluation in e-Commerce Domains, with an Application and Case Study for Online Auction," Information Systems Frontiers, Springer, vol. 7(4), pages 421-434, December.
  • Handle: RePEc:spr:infosf:v:7:y:2005:i:4:d:10.1007_s10796-005-4812-6
    DOI: 10.1007/s10796-005-4812-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-005-4812-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-005-4812-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Bang Chen & Chengcui Zhang, 2009. "An automated bacterial colony counting and classification system," Information Systems Frontiers, Springer, vol. 11(4), pages 349-368, September.
    2. Wei-Feng Tung & Soe-Tsyr Yuan & Yen-Cheng Wu & Patrick Hung, 2014. "Collaborative service system design for music content creation," Information Systems Frontiers, Springer, vol. 16(2), pages 291-302, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    3. Baesens, Bart & Verstraeten, Geert & Van den Poel, Dirk & Egmont-Petersen, Michael & Van Kenhove, Patrick & Vanthienen, Jan, 2004. "Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers," European Journal of Operational Research, Elsevier, vol. 156(2), pages 508-523, July.
    4. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    5. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    6. Seret, Alex & Verbraken, Thomas & Versailles, Sébastien & Baesens, Bart, 2012. "A new SOM-based method for profile generation: Theory and an application in direct marketing," European Journal of Operational Research, Elsevier, vol. 220(1), pages 199-209.
    7. Luis Castro-Martín & Maria del Mar Rueda & Ramón Ferri-García, 2020. "Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    8. Benjamin Lev, 2007. "Book Reviews," Interfaces, INFORMS, vol. 37(3), pages 300-304, June.
    9. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    10. Viaene, Stijn & Dedene, Guido, 2005. "Cost-sensitive learning and decision making revisited," European Journal of Operational Research, Elsevier, vol. 166(1), pages 212-220, October.
    11. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
    12. Baumgartner, Bernhard & Hruschka, Harald, 2005. "Allocation of catalogs to collective customers based on semiparametric response models," European Journal of Operational Research, Elsevier, vol. 162(3), pages 839-849, May.
    13. Bert de Reyck & Zeger Degraeve, 2003. "Broadcast Scheduling for Mobile Advertising," Operations Research, INFORMS, vol. 51(4), pages 509-517, August.
    14. Jonker, J.-J. & Piersma, N. & Van den Poel, D., 2002. "Joint optimization of customer segmentation and marketing policy to maximize long-term profitability," Econometric Institute Research Papers EI 2002-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Rocío G. Martínez & Ramon A. Carrasco & Cristina Sanchez-Figueroa & Diana Gavilan, 2021. "An RFM Model Customizable to Product Catalogues and Marketing Criteria Using Fuzzy Linguistic Models: Case Study of a Retail Business," Mathematics, MDPI, vol. 9(16), pages 1-31, August.
    16. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    17. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    18. Mehdi Neshat & Ali Akbar Pourahmad & Mohammad Reza Hasani, 2016. "Designing an Adaptive Neuro Fuzzy Inference System for Prediction of Customers Satisfaction," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-21, December.
    19. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    20. B Baesens & T Van Gestel & M Stepanova & D Van den Poel & J Vanthienen, 2005. "Neural network survival analysis for personal loan data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1089-1098, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:7:y:2005:i:4:d:10.1007_s10796-005-4812-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.