IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v23y2021i6d10.1007_s10796-021-10135-7.html
   My bibliography  Save this article

A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets

Author

Listed:
  • Harleen Kaur

    (Jamia Hamdard)

  • Shafqat Ul Ahsaan

    (Jamia Hamdard)

  • Bhavya Alankar

    (Jamia Hamdard)

  • Victor Chang

    (Teesside University)

Abstract

With the rise in cases of COVID-19, a bizarre situation of pressure was mounted on each country to make arrangements to control the population and utilize the available resources appropriately. The swiftly rising of positive cases globally created panic, anxiety and depression among people. The effect of this deadly disease was found to be directly proportional to the physical and mental health of the population. As of 28 October 2020, more than 40 million people are tested positive and more than 1 million deaths have been recorded. The most dominant tool that disturbed human life during this time is social media. The tweets regarding COVID-19, whether it was a number of positive cases or deaths, induced a wave of fear and anxiety among people living in different parts of the world. Nobody can deny the truth that social media is everywhere and everybody is connected with it directly or indirectly. This offers an opportunity for researchers and data scientists to access the data for academic and research use. The social media data contains many data that relate to real-life events like COVID-19. In this paper, an analysis of Twitter data has been done through the R programming language. We have collected the Twitter data based on hashtag keywords, including COVID-19, coronavirus, deaths, new case, recovered. In this study, we have designed an algorithm called Hybrid Heterogeneous Support Vector Machine (H-SVM) and performed the sentiment classification and classified them positive, negative and neutral sentiment scores. We have also compared the performance of the proposed algorithm on certain parameters like precision, recall, F1 score and accuracy with Recurrent Neural Network (RNN) and Support Vector Machine (SVM).

Suggested Citation

  • Harleen Kaur & Shafqat Ul Ahsaan & Bhavya Alankar & Victor Chang, 2021. "A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets," Information Systems Frontiers, Springer, vol. 23(6), pages 1417-1429, December.
  • Handle: RePEc:spr:infosf:v:23:y:2021:i:6:d:10.1007_s10796-021-10135-7
    DOI: 10.1007/s10796-021-10135-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10135-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10135-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luisa Massari, 2010. "Analysis of MySpace user profiles," Information Systems Frontiers, Springer, vol. 12(4), pages 361-367, September.
    2. Mohammed Kuko & Mohammad Pourhomayoun, 2020. "Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods," Information Systems Frontiers, Springer, vol. 22(5), pages 1039-1051, October.
    3. Mohammed Kuko & Mohammad Pourhomayoun, 0. "Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods," Information Systems Frontiers, Springer, vol. 0, pages 1-13.
    4. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    5. Michelle Richey & Aparna Gonibeed & M. N. Ravishankar, 2018. "The Perils and Promises of Self-Disclosure on Social Media," Information Systems Frontiers, Springer, vol. 20(3), pages 425-437, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Intan Nurma Yulita & Victor Wijaya & Rudi Rosadi & Indra Sarathan & Yusa Djuyandi & Anton Satria Prabuwono, 2023. "Analysis of Government Policy Sentiment Regarding Vacation during the COVID-19 Pandemic Using the Bidirectional Encoder Representation from Transformers (BERT)," Data, MDPI, vol. 8(3), pages 1-17, February.
    2. Victor Chang & Carole Goble & Muthu Ramachandran & Lazarus Jegatha Deborah & Reinhold Behringer, 2021. "Editorial on Machine Learning, AI and Big Data Methods and Findings for COVID-19," Information Systems Frontiers, Springer, vol. 23(6), pages 1363-1367, December.
    3. Waseem Ahmad & Bang Wang & Philecia Martin & Minghua Xu & Han Xu, 2023. "Enhanced sentiment analysis regarding COVID-19 news from global channels," Journal of Computational Social Science, Springer, vol. 6(1), pages 19-57, April.
    4. Carlos Henríquez Miranda & German Sanchez-Torres & Dixon Salcedo, 2023. "Exploring the Evolution of Sentiment in Spanish Pandemic Tweets: A Data Analysis Based on a Fine-Tuned BERT Architecture," Data, MDPI, vol. 8(6), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lydia Bouzar-Benlabiod & Stuart H. Rubin, 2020. "Heuristic Acquisition for Data Science," Information Systems Frontiers, Springer, vol. 22(5), pages 1001-1007, October.
    2. R. Elakkiya & Pandi Vijayakumar & Marimuthu Karuppiah, 2021. "COVID_SCREENET: COVID-19 Screening in Chest Radiography Images Using Deep Transfer Stacking," Information Systems Frontiers, Springer, vol. 23(6), pages 1369-1383, December.
    3. A. Geethapriya & S. Valli, 2021. "An Enhanced Approach to Map Domain-Specific Words in Cross-Domain Sentiment Analysis," Information Systems Frontiers, Springer, vol. 23(3), pages 791-805, June.
    4. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    5. Galli, L. & Galvan, G. & Levato, T. & Liti, C. & Piccialli, V. & Sciandrone, M., 2021. "Football: Discovering elapsing-time bias in the science of success," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    7. Chen Wei & Richard Khoury & Simon Fong, 2013. "Web 2.0 Recommendation service by multi-collaborative filtering trust network algorithm," Information Systems Frontiers, Springer, vol. 15(4), pages 533-551, September.
    8. Wheatcroft Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 273-287, December.
    9. Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
    10. Wheatcroft, Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," LSE Research Online Documents on Economics 111494, London School of Economics and Political Science, LSE Library.
    11. Niki Kiepek & Christine Ausman & Andrea Murphy & Tommy Brothers, 2023. "Socially Situated Experiences of Substance Use: A Photo Elicitation Pilot Study," SAGE Open, , vol. 13(3), pages 21582440231, September.
    12. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
    14. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    15. Zheng Wenzhi & Wu Yenchun & Shen Chuangang & Wen Hao, 2021. "Social media for talent selection? a validity test of inter-judge agreement and behavioral prediction," Information Technology and Management, Springer, vol. 22(1), pages 1-12, March.
    16. Kaur, Puneet & Islam, Nazrul & Tandon, Anushree & Dhir, Amandeep, 2021. "Social media users’ online subjective well-being and fatigue: A network heterogeneity perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Christoph Schlembach & Sascha L. Schmidt & Dominik Schreyer & Linus Wunderlich, 2020. "Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model," Papers 2012.04378, arXiv.org, revised Jun 2021.
    18. Shirumisha Kwayu & Banita Lal & Mumin Abubakre, 2018. "Enhancing Organisational Competitiveness Via Social Media - a Strategy as Practice Perspective," Information Systems Frontiers, Springer, vol. 20(3), pages 439-456, June.
    19. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    20. Xiongfei Cao & Ali Nawaz Khan & Ahsan Ali & Naseer Abbas Khan, 0. "Consequences of Cyberbullying and Social Overload while Using SNSs: A Study of Users’ Discontinuous Usage Behavior in SNSs," Information Systems Frontiers, Springer, vol. 0, pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:23:y:2021:i:6:d:10.1007_s10796-021-10135-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.