IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v21y2019i5d10.1007_s10796-017-9818-3.html
   My bibliography  Save this article

Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing

Author

Listed:
  • Federica Cena

    (University of Torino)

  • Silvia Likavec

    (University of Torino)

  • Amon Rapp

    (University of Torino)

Abstract

Over the last few years, user modeling scenery is changing. With the recent advancements in ubiquitous and wearables technologies, the amount and type of data that can be gathered about users and used to build user models is expanding. User Model can now be enriched with data regarding different aspects of people’s everyday lives. All these changes bring forth new research questions about the kinds of services which could be provided, the ways for effectively conveying new forms of personalisation and recommendation, and how traditional user modeling should change to exploit ubiquitous and wearable technology to provide these services. In this paper we follow the evolution of user modeling process, starting from the traditional User Model and progressing to RWUM - Real World User Model, which contains data from a person’s everyday life. We tried to answer the above questions and to present a conceptual framework that represents the RWUM process, which might be used as a reference model for designing RWUM-based systems. Finally, we propose some inspiring usage scenarios and design directions that can guide researchers in designing novel, robust and versatile services based on RWUM.

Suggested Citation

  • Federica Cena & Silvia Likavec & Amon Rapp, 2019. "Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing," Information Systems Frontiers, Springer, vol. 21(5), pages 1085-1110, October.
  • Handle: RePEc:spr:infosf:v:21:y:2019:i:5:d:10.1007_s10796-017-9818-3
    DOI: 10.1007/s10796-017-9818-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-017-9818-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-017-9818-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    2. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    3. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregor Bogdan & Gwiaździński Emilian, 2020. "Wearable Technology in the Perception of Young Consumers," Marketing of Scientific and Research Organizations, Sciendo, vol. 36(2), pages 61-76, June.
    2. Luz Santamaria-Granados & Juan Francisco Mendoza-Moreno & Gustavo Ramirez-Gonzalez, 2020. "Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review," Future Internet, MDPI, vol. 13(1), pages 1-38, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    2. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    3. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    4. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    5. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    7. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    8. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    9. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    10. Emilia Ingemarsdotter & Ella Jamsin & Gerd Kortuem & Ruud Balkenende, 2019. "Circular Strategies Enabled by the Internet of Things—A Framework and Analysis of Current Practice," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
    11. Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).
    12. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
    13. Seker, Sukran, 2022. "IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment," Technology in Society, Elsevier, vol. 71(C).
    14. Helder Sequeiros & Tiago Oliveira & Manoj A. Thomas, 2022. "The Impact of IoT Smart Home Services on Psychological Well-Being," Information Systems Frontiers, Springer, vol. 24(3), pages 1009-1026, June.
    15. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    16. Cenying Yang & Yihao Feng & Andrew Whinston, 2022. "Dynamic Pricing and Information Disclosure for Fresh Produce: An Artificial Intelligence Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 155-171, January.
    17. Ehab Shahat & Chang T. Hyun & Chunho Yeom, 2020. "Conceptualizing Smart Disaster Governance: An Integrative Conceptual Framework," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    18. Raja Masadeh & Bayan AlSaaidah & Esraa Masadeh & Moh’d Rasoul Al-Hadidi & Omar Almomani, 2022. "Elastic Hop Count Trickle Timer Algorithm in Internet of Things," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    19. Nripendra P. Rana & Sunil Luthra & Sachin Kumar Mangla & Rubina Islam & Sian Roderick & Yogesh K. Dwivedi, 2019. "Barriers to the Development of Smart Cities in Indian Context," Information Systems Frontiers, Springer, vol. 21(3), pages 503-525, June.
    20. Calvard, Thomas Stephen & Jeske, Debora, 2018. "Developing human resource data risk management in the age of big data," International Journal of Information Management, Elsevier, vol. 43(C), pages 159-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:21:y:2019:i:5:d:10.1007_s10796-017-9818-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.