IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v17y2015i4d10.1007_s10796-014-9526-1.html
   My bibliography  Save this article

On the inaccuracy of numerical ratings: dealing with biased opinions in social networks

Author

Listed:
  • Roberto Centeno

    (Dpto. de Lenguajes y Sistemas Informáticos, UNED)

  • Ramón Hermoso

    (University of Essex)

  • Maria Fasli

    (University of Essex)

Abstract

In this work, we study the potential problems emanating from using numerical ratings in social networks to rank entities regarding their reputation. In particular, we empirically demonstrate how reputation rankings as collected and managed by current systems are likely to be skewed due to subjectivity problems associated with the use of numerical ratings to encapsulate preferences. With the aim of overcoming these problems, we put forward an approach in which users are asked for their opinions about entities in a comparative fashion. In order to select the most appropriate users to be queried, we take advantage of the social structure derived from the interactions among users and entities following a principle of heterogeneity. Finally, we evaluate the proposed approach in the domain of movie ratings by using real datasets collected from different web sites.

Suggested Citation

  • Roberto Centeno & Ramón Hermoso & Maria Fasli, 2015. "On the inaccuracy of numerical ratings: dealing with biased opinions in social networks," Information Systems Frontiers, Springer, vol. 17(4), pages 809-825, August.
  • Handle: RePEc:spr:infosf:v:17:y:2015:i:4:d:10.1007_s10796-014-9526-1
    DOI: 10.1007/s10796-014-9526-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-014-9526-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-014-9526-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Anderson & Jeremy Magruder, 2012. "Learning from the Crowd: Regression Discontinuity Estimates of the Effects of an Online Review Database," Economic Journal, Royal Economic Society, vol. 122(563), pages 957-989, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kawaljeet Kaur Kapoor & Kuttimani Tamilmani & Nripendra P. Rana & Pushp Patil & Yogesh K. Dwivedi & Sridhar Nerur, 2018. "Advances in Social Media Research: Past, Present and Future," Information Systems Frontiers, Springer, vol. 20(3), pages 531-558, June.
    2. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    3. Young-Jin Lee & Kellie B. Keeling & Andrew Urbaczewski, 2019. "The Economic Value of Online User Reviews with Ad Spending on Movie Box-Office Sales," Information Systems Frontiers, Springer, vol. 21(4), pages 829-844, August.
    4. Carlos Iván Chesñevar & Eva Onaindia & Sascha Ossowski & George Vouros, 2015. "Special issue on agreement technologies," Information Systems Frontiers, Springer, vol. 17(4), pages 707-711, August.
    5. Matteo Manca & Ludovico Boratto & Salvatore Carta, 2018. "Behavioral data mining to produce novel and serendipitous friend recommendations in a social bookmarking system," Information Systems Frontiers, Springer, vol. 20(4), pages 825-839, August.
    6. Matteo Manca & Ludovico Boratto & Salvatore Carta, 0. "Behavioral data mining to produce novel and serendipitous friend recommendations in a social bookmarking system," Information Systems Frontiers, Springer, vol. 0, pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:spmain:info:hdl:2441/1q24hpq2919to8ct061g8p33kn is not listed on IDEAS
    2. Donald R. Davis & Jonathan I. Dingel & Joan Monras & Eduardo Morales, 2019. "How Segregated Is Urban Consumption?," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1684-1738.
    3. Tobias Gesche, 2022. "Reference‐price shifts and customer antagonism: Evidence from reviews for online auctions," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 558-578, August.
    4. Grégory Jolivet & Bruno Jullien & Fabien Postel-Vinay, 2014. "Reputation and Pricing on the e-Market: Evidence from a Major French Platform," SciencePo Working papers Main hal-03460312, HAL.
    5. Gordon Rausser & Leo Simon & Jinhua Zhao, 2015. "Rational exaggeration and counter-exaggeration in information aggregation games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 109-146, May.
    6. Engström, Per & Forsell, Eskil, 2018. "Demand effects of consumers’ stated and revealed preferences," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 43-61.
    7. Michael Luca & Georgios Zervas, 2013. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Harvard Business School Working Papers 14-006, Harvard Business School, revised May 2015.
    8. Balat, Jorge & Papageorge, Nicholas W. & Qayyum, Shaiza, 2017. "Positively Aware? Conflicting Expert Reviews and Demand for Medical Treatment," IZA Discussion Papers 10919, Institute of Labor Economics (IZA).
    9. repec:spo:wpmain:info:hdl:2441/1q24hpq2919to8ct061g8p33kn is not listed on IDEAS
    10. Tobias J. Klein & Christian Lambertz & Konrad O. Stahl, 2016. "Market Transparency, Adverse Selection, and Moral Hazard," Journal of Political Economy, University of Chicago Press, vol. 124(6), pages 1677-1713.
    11. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    12. Gesche, Tobias, 2018. "Reference Price Shifts and Customer Antagonism: Evidence from Reviews for Online Auctions," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181650, Verein für Socialpolitik / German Economic Association.
    13. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    14. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    15. Mirko Duradoni & Stefania Collodi & Serena Coppolino Perfumi & Andrea Guazzini, 2021. "Reviewing Stranger on the Internet: The Role of Identifiability through “Reputation” in Online Decision Making," Future Internet, MDPI, vol. 13(5), pages 1-12, April.
    16. Dominik Gutt & Philipp Herrmann & Mohammad S. Rahman, 2018. "Crowd-Driven Competitive Intelligence: Understanding the Relationship Between Local Market Competition and Online Rating Distributions," Working Papers Dissertations 41, Paderborn University, Faculty of Business Administration and Economics.
    17. Di Lizia, Adam, 2024. "Social Influence in Online Reviews : Evidence from the Steam Store," The Warwick Economics Research Paper Series (TWERPS) 1505, University of Warwick, Department of Economics.
    18. Dominik Gutt & Jürgen Neumann & Wael Jabr & Dennis Kundisch, 2020. "The Fate of the App: Economic Implications of Updating under Reputation Resetting," Working Papers Dissertations 76, Paderborn University, Faculty of Business Administration and Economics.
    19. Grégory Jolivet & Bruno Jullien & Fabien Postel-Vinay, 2014. "Reputation and Pricing on the e-Market: Evidence from a Major French Platform," PSE Working Papers hal-03460312, HAL.
    20. Vollaard, Ben & van Ours, Jan C., 2022. "Bias in expert product reviews," Journal of Economic Behavior & Organization, Elsevier, vol. 202(C), pages 105-118.
    21. Ayat Mazin Almahmoud, 2019. "The Impact of Social Media Characteristics and Customer Attitude on EWOM: An Empirical Study in Jordanian Banking Sector," Journal of Social Sciences (COES&RJ-JSS), , vol. 8(2), pages 169-188, April.
    22. Jolivet, Grégory & Jullien, Bruno & Postel-Vinay, Fabien, 2016. "Reputation and prices on the e-market: Evidence from a major French platform," International Journal of Industrial Organization, Elsevier, vol. 45(C), pages 59-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:17:y:2015:i:4:d:10.1007_s10796-014-9526-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.