IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i4d10.1007_s13198-018-0696-y.html
   My bibliography  Save this article

A novel cuckoo search technique for solving discrete optimization problems

Author

Listed:
  • Ashish Jain

    (Indian Institute of Technology Indore)

  • Narendra S. Chaudhari

    (Indian Institute of Technology Indore
    Visvesvaraya National Institute of Technology Nagpur)

Abstract

During the past decade, swarm intelligence (SI) techniques have received considerable recognition among researchers to solve continuous optimization problems. However, only few significant works have been reported in the literature to solve discrete optimization problems using SI techniques. Therefore, this paper proposes an improved SI technique, namely, discrete cuckoo search. As an application, the proposed technique is employed to solve a transposition cipher, and then the efficiency of the proposed technique is compared to the existing genetic algorithms. The obtained results indicate that the performance of the proposed technique is superior to genetic algorithms (as compared to genetic algorithm, cuckoo search is roughly 1.5 times faster and recovers 12% more number of key elements). Hence, the proposed technique can be utilized to solve various discrete optimization problems, e.g., for optimal placement of phaser measurement units in a power system, traveling salesman problem, graph coloring problem etc.

Suggested Citation

  • Ashish Jain & Narendra S. Chaudhari, 2018. "A novel cuckoo search technique for solving discrete optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 972-986, August.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-018-0696-y
    DOI: 10.1007/s13198-018-0696-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-018-0696-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-018-0696-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    2. Zhengyu Hu & Wenrui Liu & Shengchen Ling & Kuan Fan, 2021. "Research on multi-objective optimal scheduling considering the balance of labor workload distribution," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    3. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    4. Hasani, Ali & Hosseini, Seyed Mohammad Hassan, 2020. "A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    5. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.
    6. Fatima Benbouzid-Si Tayeb & Karima Benatchba & Abd-Essalam Messiaid, 2018. "Game theory-based integration of scheduling with flexible and periodic maintenance planning in the permutation flowshop sequencing problem," Operational Research, Springer, vol. 18(1), pages 221-255, April.
    7. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
    8. Sabar, Nasser R. & Kendall, Graham, 2015. "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem," Omega, Elsevier, vol. 56(C), pages 88-98.
    9. Krystel K. Castillo-Villar, 2014. "Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future," Energies, MDPI, vol. 7(11), pages 1-33, November.
    10. Behrooz Shahbazi & Seyed Habib A. Rahmati, 2021. "Developing a Flexible Manufacturing Control System Considering Mixed Uncertain Predictive Maintenance Model: a Simulation-Based Optimization Approach," SN Operations Research Forum, Springer, vol. 2(4), pages 1-43, December.
    11. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
    12. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    13. Liu, Ming & Yang, Xuenan & Chu, Feng & Zhang, Jiantong & Chu, Chengbin, 2020. "Energy-oriented bi-objective optimization for the tempered glass scheduling," Omega, Elsevier, vol. 90(C).
    14. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-018-0696-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.