IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i3d10.1007_s13198-017-0644-2.html
   My bibliography  Save this article

Design for reliability of automotive systems; case study of dry friction clutch

Author

Listed:
  • Mohammad Pourgol-Mohammad

    (Sahand University of Technology)

  • Amirmohsen Hejazi

    (Sahand University of Technology)

  • Morteza Soleimani

    (Tabriz University)

  • Pejman Ghasemi

    (Tabriz University)

  • Alireza Ahmadi

    (Lulea University of Technology)

  • Davoud Jalali-Vahid

    (Sahand University of Technology)

Abstract

Design and production of highly reliable and safer automotive systems with longer life has been a challenge. The pressure is outcome of high competitive market and recent safety issues of reputable car manufacturers. In this paper, an integrated methodology is proposed based on design for reliability of automotive systems and considering its reliability/safety critical sub-systems. In the proposed approach, the FMEA results are used in the process of failure mode/mechanism identification. The basic failure data, mostly obtained from generic databases, are adjusted by multiplicative corrective factors to account for the design and environment impacts on system failure characteristics. The system is modeled by reliability block diagram method, simulated by Monte Carlo technique. The results of FMEA and reliability evaluation are used for system improvement by reducing the components’ failure rates and potential change of system configuration. The components’ reliability is improved by increasing the quality of components by utilization of high quality materials and modern manufacturing techniques. Modification of system configuration, e.g., adding redundancy, is an alternative for system reliability improvement in some cases. The results show that the friction lining component is the most critical elements in terms of reliability importance. After completion of this phase, an assessment is done for system reliability by comparing the system reliability targets. As a case study, dry friction clutch is studied for assessment of the proposed method. In this study, the life test requirement is researched for each component using a reliability testing techniques. Finally, the uncertainties are computed associated with the failure data and final reliability estimations and the results were presented with a confidence interval.

Suggested Citation

  • Mohammad Pourgol-Mohammad & Amirmohsen Hejazi & Morteza Soleimani & Pejman Ghasemi & Alireza Ahmadi & Davoud Jalali-Vahid, 2017. "Design for reliability of automotive systems; case study of dry friction clutch," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 572-583, September.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-017-0644-2
    DOI: 10.1007/s13198-017-0644-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0644-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0644-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1227-1249, December.
    2. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 0. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    3. Sainath G. Bidikar & Santosh B. Rane & Prathamesh R. Potdar, 2022. "Product development using Design for Six Sigma approach: case study in switchgear industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 203-230, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    3. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    4. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    5. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    6. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    7. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    9. D E Salazar A & C M Rocco S & E Zio, 2008. "Optimal protection of complex networks exposed to a terrorist hazard: A multi-objective evolutionary approach," Journal of Risk and Reliability, , vol. 222(3), pages 327-335, September.
    10. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    11. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    12. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    13. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    14. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    15. Hemant Kumar & Shiv Prasad Yadav, 2019. "Fuzzy rule-based reliability analysis using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 953-972, October.
    16. Hemant Kumar & Shiv Prasad Yadav, 2017. "NSGA-II based fuzzy multi-objective reliability analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 817-825, December.
    17. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    18. Ebrahimi, Nader & Shehadeh, Mahmoud, 2015. "Assessing the reliability of components with micro- and nano-structures when they are part a multi-scale system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 13-20.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
    20. Mohammad N. Juybari & Pardis Pourkarim Guilani & Mostafa Abouei Ardakan, 2022. "Bi-objective sequence optimization in reliability problems with a matrix-analytic approach," Annals of Operations Research, Springer, vol. 312(1), pages 275-304, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:3:d:10.1007_s13198-017-0644-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.