IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i1d10.1007_s13198-015-0360-8.html
   My bibliography  Save this article

Mathematical modeling and reliability analysis of the serial processes in feeding system of a sugar plant

Author

Listed:
  • Anil Kr. Aggarwal

    (Rattan Institute of Technology & Management)

  • Sanjeev Kumar

    (YMCA University of Science & Technology (YMCAUST))

  • Vikram Singh

    (YMCA University of Science & Technology (YMCAUST))

Abstract

In this paper, a numerical method is proposed for the reliability analysis of serial processes in the feeding system of a sugar plant. The feeding system is a complex system and comprises of four repairable sub-systems viz. cutting system, crushing system, bagasse carrying system and heat generating system arranged in series or parallel configurations. Three sub-systems namely cutting system, bagasse carrying system and heat generating system are supported by standby units with perfect switch over devices. Mathematical modeling of the system based on Markov birth–death process is carried out to derive Chapman–Kolmogorov differential equations. These equations are solved by using the proposed method i.e. an adaptive step-size control Runge–Kutta method. The long-run availability, reliability and mean time between failures (MTBF) for the system are computed for performance analysis of the system. These results are presented and discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the feeding system of sugar plant.

Suggested Citation

  • Anil Kr. Aggarwal & Sanjeev Kumar & Vikram Singh, 2017. "Mathematical modeling and reliability analysis of the serial processes in feeding system of a sugar plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 435-450, January.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0360-8
    DOI: 10.1007/s13198-015-0360-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-015-0360-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-015-0360-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    2. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    3. Barone, Giorgio & Frangopol, Dan M., 2014. "Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 21-37.
    4. Chi Zhang & Ali Mostashari, 2011. "Influence of component uncertainty on reliability assessment of systems with continuous states," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 7(4), pages 542-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sainath G. Bidikar & Santosh B. Rane & Prathamesh R. Potdar, 2022. "Product development using Design for Six Sigma approach: case study in switchgear industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 203-230, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anil Kr. Aggarwal & Vikram Singh & Sanjeev Kumar, 2017. "Availability analysis and performance optimization of a butter oil production system: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 538-554, January.
    2. Anil Kr. Aggarwal & Sanjeev Kumar & Vikram Singh, 2017. "Performance modeling of the serial processes in refining system of a sugar plant using RAMD analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1910-1922, November.
    3. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    4. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Bian, Yangqing & Ma, Lin, 2015. "An effective approach to reducing strategy space for maintenance optimisation of multistate series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 40-53.
    7. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui & Chen, Ying, 2018. "A stochastic hybrid systems model of common-cause failures of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 159-170.
    8. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    9. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    10. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Zhang, Yongjin & Zhao, Ming & Zhang, Shitao & Wang, Jiamei & Zhang, Yanjun, 2017. "An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 24-36.
    12. Parsa, Motahareh & Di Crescenzo, Antonio & Jabbari, Hadi, 2018. "Analysis of reliability systems via Gini-type index," European Journal of Operational Research, Elsevier, vol. 264(1), pages 340-353.
    13. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    14. Ryan, Paraic C. & Stewart, Mark G. & Spencer, Nathan & Li, Yue, 2014. "Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 261-273.
    15. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimizing preventive replacement schedule in standby systems with time consuming task transfers," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Evrencan Özcan & Rabia Yumuşak & Tamer Eren, 2019. "Risk Based Maintenance in the Hydroelectric Power Plants," Energies, MDPI, vol. 12(8), pages 1-22, April.
    19. Juhyun Lee & Byunghoon Kim & Suneung Ahn, 2019. "Maintenance Optimization for Repairable Deteriorating Systems under Imperfect Preventive Maintenance," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    20. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0360-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.