IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i1d10.1007_s13198-015-0356-4.html
   My bibliography  Save this article

Materialized view selection using HBMO

Author

Listed:
  • T. V. Vijay Kumar

    (Jawaharlal Nehru University)

  • Biri Arun

    (Jawaharlal Nehru University)

Abstract

Strategic business decision making has become far more complex, challenging and consequential in today’s modern and highly competitive economy. So, managers have been using decision support systems to assist them in making accurate, efficient and effective decisions. These systems takes hours and days to process massive data sets in order to find relevant information for answering analytical queries. As a result the query response times are high. This response time can be reduced substantially by selecting and materializing pre-computed views that can provide answers to analytical queries. In this paper, an attempt has been made to select optimal sets of views, which would significantly reduce response time of analytical queries. In this regard, honey bee mating optimization based view selection algorithm (HBMOVSA) is proposed that selects Top-K views, from amongst all possible views, in a multidimensional lattice. Experimental results show that HBMOVSA is able to select comparatively better quality of views when compared with those selected by the most fundamental view selection algorithm HRUA.

Suggested Citation

  • T. V. Vijay Kumar & Biri Arun, 2017. "Materialized view selection using HBMO," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 379-392, January.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0356-4
    DOI: 10.1007/s13198-015-0356-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-015-0356-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-015-0356-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
    2. Biren Shah & Karthik Ramachandran & Vijay Raghavan, 2006. "A Hybrid Approach for Data Warehouse View Selection," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 2(2), pages 1-37, April.
    3. T.V. Vijay Kumar, 2013. "Answering query-based selection of materialised views," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 5(1), pages 103-116.
    4. T.V. Vijay Kumar & Kalyani Devi, 2012. "Materialised view construction in data warehouse for decision making," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 11(4), pages 379-396.
    5. T.V. Vijay Kumar & Santosh Kumar, 2015. "Materialised view selection using randomised algorithms," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 19(2), pages 224-240.
    6. T.V. Vijay Kumar & Mohammad Haider, 2015. "Query answering-based view selection," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 18(3), pages 338-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 972-984, October.
    2. Akshay Kumar & T. V. Vijay Kumar, 2022. "Multi-Objective Big Data View Materialization Using MOGA," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-28, January.
    3. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using MOGA," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 220-231, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using MOGA," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 220-231, July.
    2. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 972-984, October.
    3. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.
    4. Mohammad Solgi & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2017. "The Enhanced Honey-Bee Mating Optimization Algorithm for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 885-901, February.
    5. Mohammad Azizipour & Vahid Ghalenoei & M. H. Afshar & S. S. Solis, 2016. "Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3995-4009, September.
    6. Songphol Songsaengrit & Anongrit Kangrang, 2022. "Dynamic Rule Curves and Streamflow under Climate Change for Multipurpose Reservoir Operation Using Honey-Bee Mating Optimization," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    7. Niknam, Taher & Taheri, Seyed Iman & Aghaei, Jamshid & Tabatabaei, Sajad & Nayeripour, Majid, 2011. "A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4817-4830.
    8. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    9. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    10. M. Afshar & R. Moeini, 2008. "Partially and Fully Constrained Ant Algorithms for the Optimal Solution of Large Scale Reservoir Operation Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1835-1857, December.
    11. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    12. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    13. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    14. Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Metaheuristic Algorithm Based on Chemotherapy Science: CSA," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, February.
    15. Arya Yaghoubzadeh-Bavandpour & Omid Bozorg-Haddad & Mohammadreza Rajabi & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Application of Swarm Intelligence and Evolutionary Computation Algorithms for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2275-2292, May.
    16. Omid Bozorg Haddad & Abbas Afshar & Miguel Mariño, 2008. "Design-Operation of Multi-Hydropower Reservoirs: HBMO Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1709-1722, December.
    17. Omid Bozorg-Haddad & Mahboubeh Zarezadeh-Mehrizi & Mehri Abdi-Dehkordi & Hugo A. Loáiciga & Miguel A. Mariño, 2016. "A self-tuning ANN model for simulation and forecasting of surface flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2907-2929, July.
    18. Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.
    19. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    20. Mohammed Falah Allawi & Othman Jaafar & Mohammad Ehteram & Firdaus Mohamad Hamzah & Ahmed El-Shafie, 2018. "Synchronizing Artificial Intelligence Models for Operating the Dam and Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3373-3389, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0356-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.