IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i9d10.1007_s13198-024-02418-4.html
   My bibliography  Save this article

Meta heuristic optimization of a batch arrival retrial queue with optional re-service and M-optional vacations

Author

Listed:
  • R. Harini

    (Vellore Institute of Technology)

  • K. Indhira

    (Vellore Institute of Technology)

Abstract

Queueing systems (QS) are essential for modelling and optimising a wide range of real-world scenarios because they effectively control the flow of entities through a system where there are queues. Addressing this, proposed QS comprises with batch arrival, retrial policy, optional re-service, and M-optional vacation alongside breakdown situations. The dynamics of the system are thoroughly investigated by utilizing the supplementary variable technique, which enables greater understanding of the system’s behaviour and performance. Furthermore, Adaptive Neuro-Fuzzy Inference System computation is used to properly validate the analytical results, improving the precision and dependability of the model’s predictions. Finally, in an effort to minimize operating efficiency, a variety of advanced cost optimization approaches have been employed to determine the system’s ideal cost structure. As a result, through this integrated approach, the proposed QS not only furnishes perceptions into operational dynamics but also furnishes practical methods to reduce costs and authenticate analytical conclusions, thereby enhancing queueing theory progressions and realistic applications across diverse fields.

Suggested Citation

  • R. Harini & K. Indhira, 2024. "Meta heuristic optimization of a batch arrival retrial queue with optional re-service and M-optional vacations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4252-4282, September.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02418-4
    DOI: 10.1007/s13198-024-02418-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02418-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02418-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shweta Upadhyaya & Chetna Kushwaha, 2020. "Performance prediction and ANFIS computing for unreliable retrial queue with delayed repair under modified vacation policy," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 17(4), pages 437-466.
    2. Jain, Madhu & Dhibar, Sibasish, 2023. "ANFIS and metaheuristic optimization for strategic joining policy with re-attempt and vacation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 57-84.
    3. Kumar, Anshul & Jain, Madhu, 2023. "Cost Optimization of an Unreliable server queue with two stage service process under hybrid vacation policy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 259-281.
    4. Shweta Upadhyaya & Richa Sharma & Divya Agarwal & Geetika Malik, 2023. "Convexity analysis and cost optimization of a retrial queue with Bernoulli vacation and delayed phase mending," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1671-1690, October.
    5. Shweta Upadhyaya, 2020. "Cost optimisation of a discrete-time retrial queue with Bernoulli feedback and starting failure," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 36(2), pages 165-196.
    6. Shweta Upadhyaya, 2015. "Admission control of bulk retrial feedback queue with K-optional vacations," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 7(2), pages 215-239.
    7. A. G. Pakes, 1969. "Some Conditions for Ergodicity and Recurrence of Markov Chains," Operations Research, INFORMS, vol. 17(6), pages 1058-1061, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Harini & K. Indhira, 2024. "Dynamical modelling and cost optimization of a 5G base station for energy conservation using feedback retrial queue with sleeping strategy," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(4), pages 661-690, August.
    2. Shweta Upadhyaya, 2020. "Investigating a general service retrial queue with damaging and licensed units: an application in local area networks," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 716-745, September.
    3. Fan Xu & Ruiling Tian & Qi Shao, 2024. "Optimal Pricing Strategy in an Unreliable M/M/1 Retrial Queue with Delayed Repair and Breakdown Deterioration," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-22, June.
    4. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    5. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    6. Baumann, Hendrik & Sandmann, Werner, 2014. "On finite long run costs and rewards in infinite Markov chains," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 41-46.
    7. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    8. Gorbunova, A.V. & Lebedev, A.V., 2023. "Nonlinear approximation of characteristics of a fork–join queueing system with Pareto service as a model of parallel structure of data processing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 409-428.
    9. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    10. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    11. Shweta Upadhyaya & Richa Sharma & Divya Agarwal & Geetika Malik, 2023. "Convexity analysis and cost optimization of a retrial queue with Bernoulli vacation and delayed phase mending," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1671-1690, October.
    12. V. Jailaxmi & R. Arumuganathan & M. Senthil Kumar, 2017. "Performance analysis of an M/G/1 retrial queue with general retrial time, modified M-vacations and collision," Operational Research, Springer, vol. 17(2), pages 649-667, July.
    13. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.
    14. I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
    15. P. Rajadurai & V. M. Chandrasekaran & M. C. Saravanarajan, 2016. "Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 197-223, March.
    16. Sunggon Kim & Jongwoo Kim & Eui Lee, 2006. "Stationary distribution of queue length in G / M / 1 queue with two-stage service policy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 467-480, December.
    17. Ahuja, Anjali & Jain, Anamika & Jain, Madhu, 2022. "Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 464-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02418-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.