IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v91y2014icp41-46.html
   My bibliography  Save this article

On finite long run costs and rewards in infinite Markov chains

Author

Listed:
  • Baumann, Hendrik
  • Sandmann, Werner

Abstract

Conditions for the finiteness of long run costs and rewards associated with infinite recurrent Markov chains that may be discrete or continuous in time are considered. Without resorting to results from the theory of Markov processes on general state spaces we provide instructive proofs in the course of which we derive auxiliary results that are of interest in themselves. Potential applications of the finiteness conditions are outlined in order to elucidate their high practical relevance.

Suggested Citation

  • Baumann, Hendrik & Sandmann, Werner, 2014. "On finite long run costs and rewards in infinite Markov chains," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 41-46.
  • Handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:41-46
    DOI: 10.1016/j.spl.2014.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. G. Pakes, 1969. "Some Conditions for Ergodicity and Recurrence of Markov Chains," Operations Research, INFORMS, vol. 17(6), pages 1058-1061, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    2. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    3. Shweta Upadhyaya, 2020. "Investigating a general service retrial queue with damaging and licensed units: an application in local area networks," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 716-745, September.
    4. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    5. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    6. V. Jailaxmi & R. Arumuganathan & M. Senthil Kumar, 2017. "Performance analysis of an M/G/1 retrial queue with general retrial time, modified M-vacations and collision," Operational Research, Springer, vol. 17(2), pages 649-667, July.
    7. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.
    8. I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
    9. P. Rajadurai & V. M. Chandrasekaran & M. C. Saravanarajan, 2016. "Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 197-223, March.
    10. Sunggon Kim & Jongwoo Kim & Eui Lee, 2006. "Stationary distribution of queue length in G / M / 1 queue with two-stage service policy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 467-480, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:41-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.