IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i6d10.1007_s13198-024-02296-w.html
   My bibliography  Save this article

Research on construction and task planning of police equipment support system based on background of anti-terrorism operation

Author

Listed:
  • Qilei Wang

    (China People’s Police University)

Abstract

In order to ensure the operational efficiency of police personnel under the background of anti-terrorism operation, this paper puts forward the planning and construction method of equipment support system for task demand, and constructs the anti-terrorism equipment support system in Xinjiang region Combined with the constructed system, a mathematical model with time-priority as the objective is established, and a hybrid task planning method based on multidimensional dynamic list programming and chaotic bat algorithm is proposed. A discrete chaotic bat algorithm with adaptive search strategy and mutation operation is designed to allocate resources for selected tasks by multidimensional dynamic list tasks. The research shows that the established support system fully considers the equipment system demand generation mechanism under the Background of anti-terrorism operation, and increases the introduction of the support system and the technical standard system, which can effectively meet the personnel equipment support needs in the anti-terrorism environment.

Suggested Citation

  • Qilei Wang, 2024. "Research on construction and task planning of police equipment support system based on background of anti-terrorism operation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2730-2742, June.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:6:d:10.1007_s13198-024-02296-w
    DOI: 10.1007/s13198-024-02296-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02296-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02296-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boutselis, Petros & McNaught, Ken, 2019. "Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context," International Journal of Production Economics, Elsevier, vol. 209(C), pages 325-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    2. Houxiang Wang & Haitao Liu & Songshi Shao & Zhihua Zhang, 2024. "Methodology of Shipboard Spare Parts Requirements Based on Whole Part Repair Strategy," Mathematics, MDPI, vol. 12(19), pages 1-25, September.
    3. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    4. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    5. Babai, M.Z. & Chen, H. & Syntetos, A.A. & Lengu, D., 2021. "A compound-Poisson Bayesian approach for spare parts inventory forecasting," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Abroon Qazi & Mecit Can Emre Simsekler & Steven Formaneck, 2023. "Supply chain risk network value at risk assessment using Bayesian belief networks and Monte Carlo simulation," Annals of Operations Research, Springer, vol. 322(1), pages 241-272, March.
    7. Boram Choi & Jong Hwan Suh, 2020. "Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    8. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:6:d:10.1007_s13198-024-02296-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.