IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-021-01615-9.html
   My bibliography  Save this article

An improved genetic algorithm for the machine-part cell formation problem

Author

Listed:
  • Manash Hazarika

    (Assam Engineering College)

Abstract

Cellular manufacturing system (CMS) deals with the set of procedures used by the company to drive the production facilities and to manage production efficiently by solving the technical and logistic problems encountered in the factory, and ensuring that products meet quality standards. The CMS is well thought-out as an efficient production approach to make batch manufacturing as efficient and productive as possible. The CMS relies on the theory of group technology (GT) for grouping dissimilar machines in machine cells and grouping parts into part families to take the benefit of their similarities in design and production process. It reduce total intercellular pass as well as to make the most of the number of operations within a machine cell. This paper presents a meta-heuristic genetic algorithm to resolve machine cell formation problem (CFP) in CMS and paying concentration on maximizing grouping efficacy (GC) by reducing outside elements and void elements in diagonal blocks. Computational work was carried out on 36 standard problems from the literature. The outcome confirms that the proposed meta-heuristic in terms of GC has shown to produce solutions are either enhanced or aggressive with other accessible algorithms.

Suggested Citation

  • Manash Hazarika, 2023. "An improved genetic algorithm for the machine-part cell formation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 206-219, February.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-021-01615-9
    DOI: 10.1007/s13198-021-01615-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01615-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01615-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosier, Charles & Taube, Larry, 1985. "The facets of group technology and their impacts on implementation--A state-of-the-art survey," Omega, Elsevier, vol. 13(5), pages 381-391.
    2. Juan Díaz & Dolores Luna & Ricardo Luna, 2012. "A GRASP heuristic for the manufacturing cell formation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 679-706, October.
    3. Mosier, Charles & Taube, Larry, 1985. "Weighted similarity measure heuristics for the group technology machine clustering problem," Omega, Elsevier, vol. 13(6), pages 577-579.
    4. Adil, Gajendra K. & Rajamani, Divakar & Strong, Doug, 1993. "A mathematical model for cell formation considering investment and operational costs," European Journal of Operational Research, Elsevier, vol. 69(3), pages 330-341, September.
    5. Ravi Kumar, K. & Kusiak, Andrew & Vannelli, Anthony, 1986. "Grouping of parts and components in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 24(3), pages 387-397, March.
    6. Hachicha, Wafik & Masmoudi, Faouzi & Haddar, Mohamed, 2006. "Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach," MPRA Paper 3975, University Library of Munich, Germany, revised 04 Jan 2007.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stawowy, Adam, 2006. "Evolutionary strategy for manufacturing cell design," Omega, Elsevier, vol. 34(1), pages 1-18, January.
    2. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    3. Logendran, Rasaratnam & Talkington, Diane, 1997. "Analysis of cellular and functional manufacturing systems in the presence of machine breakdown," International Journal of Production Economics, Elsevier, vol. 53(3), pages 239-256, December.
    4. Wu, Tai-Hsi & Chang, Chin-Chih & Yeh, Jinn-Yi, 2009. "A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 669-688, August.
    5. Juan Díaz & Dolores Luna & Ricardo Luna, 2012. "A GRASP heuristic for the manufacturing cell formation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 679-706, October.
    6. Ben-Arieh, David & Sreenivasan, Ravi, 1999. "Information analysis in a distributed dynamic group technology method," International Journal of Production Economics, Elsevier, vol. 60(1), pages 427-432, April.
    7. Yin, Yong & Yasuda, Kazuhiko, 2006. "Similarity coefficient methods applied to the cell formation problem: A taxonomy and review," International Journal of Production Economics, Elsevier, vol. 101(2), pages 329-352, June.
    8. Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.
    9. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    10. Kumar, Sushil & Kant, Shashi, 2005. "Bureaucracy and new management paradigms: modeling foresters' perceptions regarding community-based forest management in India," Forest Policy and Economics, Elsevier, vol. 7(4), pages 651-669, May.
    11. Vikrant Sharma & Sundeep Kumar & M. L. Meena, 2022. "Key criteria influencing cellular manufacturing system: a fuzzy AHP model," Journal of Business Economics, Springer, vol. 92(1), pages 65-84, January.
    12. Manojit Chattopadhyay & Sourav Sengupta & B.S. Sahay, 2016. "Visual hierarchical clustering of supply chain using growing hierarchical self-organising map algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2552-2571, May.
    13. Mohamed, Zubair M. & Kumar, Ashok & Motwani, Jaideep, 1999. "An improved part grouping model for minimizing makespan in FMS," European Journal of Operational Research, Elsevier, vol. 116(1), pages 171-182, July.
    14. Hachicha, Wafik & Masmoudi, Faouzi & Haddar, Mohamed, 2006. "Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach," MPRA Paper 3975, University Library of Munich, Germany, revised 04 Jan 2007.
    15. Riezebos, J., 1998. "Production planning systems for cellular manufacturing," Research Report 98A07, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Xambre, Ana R. & Vilarinho, Pedro M., 2003. "A simulated annealing approach for manufacturing cell formation with multiple identical machines," European Journal of Operational Research, Elsevier, vol. 151(2), pages 434-446, December.
    17. Kulkarni, Uday R. & Kiang, Melody Y., 1995. "Dynamic grouping of parts in flexible manufacturing systems -- a self-organizing neural networks approach," European Journal of Operational Research, Elsevier, vol. 84(1), pages 192-212, July.
    18. Agarwal, Atul, 2008. "Partitioning bottleneck work center for cellular manufacturing: An integrated performance and cost model," International Journal of Production Economics, Elsevier, vol. 111(2), pages 635-647, February.
    19. R Tavakkoli-Moghaddam & N Safaei & F Sassani, 2008. "A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 443-454, April.
    20. repec:dgr:rugsom:98a07 is not listed on IDEAS
    21. John G. Klincewicz & Arvind Rajan, 1994. "Using grasp to solve the component grouping problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 893-912, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-021-01615-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.