IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v13y1985i6p577-579.html
   My bibliography  Save this article

Weighted similarity measure heuristics for the group technology machine clustering problem

Author

Listed:
  • Mosier, Charles
  • Taube, Larry

Abstract

No abstract is available for this item.

Suggested Citation

  • Mosier, Charles & Taube, Larry, 1985. "Weighted similarity measure heuristics for the group technology machine clustering problem," Omega, Elsevier, vol. 13(6), pages 577-579.
  • Handle: RePEc:eee:jomega:v:13:y:1985:i:6:p:577-579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0305-0483(85)90046-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manojit Chattopadhyay & Sourav Sengupta & B.S. Sahay, 2016. "Visual hierarchical clustering of supply chain using growing hierarchical self-organising map algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2552-2571, May.
    2. Manash Hazarika, 2023. "An improved genetic algorithm for the machine-part cell formation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 206-219, February.
    3. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    4. Ricardo Soto & Broderick Crawford & Rodrigo Olivares & César Carrasco & Eduardo Rodriguez-Tello & Carlos Castro & Fernando Paredes & Hanns de la Fuente-Mella, 2020. "A Reactive Population Approach on the Dolphin Echolocation Algorithm for Solving Cell Manufacturing Systems," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    5. Nair, G. Jayakrishnan & Narendran, T. T., 1997. "On the use of the asymptotic forms of the boolean matrix for designing cellular manufacturing systems -- An improved approach," European Journal of Operational Research, Elsevier, vol. 100(3), pages 429-440, August.
    6. R Bhatnagar & V Saddikuti, 2010. "Models for cellular manufacturing systems design: matching processing requirements and operator capabilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 827-839, May.
    7. Ben-Arieh, D. & Lee, S. E. & Chang, P. T., 1996. "Fuzzy part coding for group technology," European Journal of Operational Research, Elsevier, vol. 92(3), pages 637-648, August.
    8. Yin, Yong & Yasuda, Kazuhiko, 2006. "Similarity coefficient methods applied to the cell formation problem: A taxonomy and review," International Journal of Production Economics, Elsevier, vol. 101(2), pages 329-352, June.
    9. Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.
    10. Juan Díaz & Dolores Luna & Ricardo Luna, 2012. "A GRASP heuristic for the manufacturing cell formation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 679-706, October.
    11. Wu, Tai-Hsi & Chang, Chin-Chih & Yeh, Jinn-Yi, 2009. "A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 669-688, August.
    12. Stawowy, Adam, 2006. "Evolutionary strategy for manufacturing cell design," Omega, Elsevier, vol. 34(1), pages 1-18, January.
    13. Mosier, C. T. & Yelle, J. & Walker, G., 1997. "Survey of similarity coefficient based methods as applied to the group technology configuration problem," Omega, Elsevier, vol. 25(1), pages 65-79, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:13:y:1985:i:6:p:577-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.