IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v101y2006i2p329-352.html
   My bibliography  Save this article

Similarity coefficient methods applied to the cell formation problem: A taxonomy and review

Author

Listed:
  • Yin, Yong
  • Yasuda, Kazuhiko

Abstract

No abstract is available for this item.

Suggested Citation

  • Yin, Yong & Yasuda, Kazuhiko, 2006. "Similarity coefficient methods applied to the cell formation problem: A taxonomy and review," International Journal of Production Economics, Elsevier, vol. 101(2), pages 329-352, June.
  • Handle: RePEc:eee:proeco:v:101:y:2006:i:2:p:329-352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(05)00049-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Offodile, O Felix, 1993. "Machine grouping in cellular manufacturing," Omega, Elsevier, vol. 21(1), pages 35-52, January.
    2. Brian Everitt, 1980. "Cluster analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 14(1), pages 75-100, January.
    3. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    4. Kulkarni, Uday R. & Kiang, Melody Y., 1995. "Dynamic grouping of parts in flexible manufacturing systems -- a self-organizing neural networks approach," European Journal of Operational Research, Elsevier, vol. 84(1), pages 192-212, July.
    5. Shambu, Girish & Suresh, Nallan C., 2000. "Performance of hybrid cellular manufacturing systems: A computer simulation investigation," European Journal of Operational Research, Elsevier, vol. 120(2), pages 436-458, January.
    6. Chow, Wing S. & Hawaleshka, Ostap, 1993. "A novel machine grouping and knowledge-based approach for cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 69(3), pages 357-372, September.
    7. Kang, Sung-Lyong & Wemmerlov, Urban, 1993. "A work load-oriented heuristic methodology for manufacturing cell formation allowing reallocation of operations," European Journal of Operational Research, Elsevier, vol. 69(3), pages 292-311, September.
    8. Ben-Arieh, David & Sreenivasan, Ravi, 1999. "Information analysis in a distributed dynamic group technology method," International Journal of Production Economics, Elsevier, vol. 60(1), pages 427-432, April.
    9. Kitaoka, Masatoshi & Nakamura, Rui & Serizawa, Seiichi & Usuki, Jun, 1999. "Multivariate analysis model for machine-part cell formation problem in group technology," International Journal of Production Economics, Elsevier, vol. 60(1), pages 433-438, April.
    10. Lashkari, R. S. & Boparai, R. & Paulo, J., 2004. "Towards an integrated model of operation allocation and material handling selection in cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 87(2), pages 115-139, January.
    11. Shafer, S. M. & Meredith, J. R. & Marsh, R. F., 1995. "A taxonomy for alternative equipment groupings in batch environments," Omega, Elsevier, vol. 23(4), pages 361-376, August.
    12. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    13. Mosier, Charles & Taube, Larry, 1985. "The facets of group technology and their impacts on implementation--A state-of-the-art survey," Omega, Elsevier, vol. 13(5), pages 381-391.
    14. Selvam, R. Panneer & Balasubramanian, K. N., 1985. "Algorithmic grouping of operation sequences," Engineering Costs and Production Economics, Elsevier, vol. 9(1-3), pages 125-134, April.
    15. Mosier, C. T. & Yelle, J. & Walker, G., 1997. "Survey of similarity coefficient based methods as applied to the group technology configuration problem," Omega, Elsevier, vol. 25(1), pages 65-79, February.
    16. S Lozano & B Adenso-Díaz & I Eguia & L Onieva, 1999. "A one-step tabu search algorithm for manufacturing cell design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 509-516, May.
    17. Singh, N., 1993. "Design of cellular manufacturing systems: An invited review," European Journal of Operational Research, Elsevier, vol. 69(3), pages 284-291, September.
    18. Mosier, Charles & Taube, Larry, 1985. "Weighted similarity measure heuristics for the group technology machine clustering problem," Omega, Elsevier, vol. 13(6), pages 577-579.
    19. Chu, C-H, 1989. "Cluster analysis in manufacturing cellular formation," Omega, Elsevier, vol. 17(3), pages 289-295.
    20. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    21. Mehrez, Abraham & Rabinowitz, GAD & Reisman, Arnold, 1988. "A conceptual scheme of knowledge systems for MS/OR," Omega, Elsevier, vol. 16(5), pages 421-428.
    22. Kaparthi, Shashidhar & Suresh, Nallan C. & Cerveny, Robert P., 1993. "An improved neural network leader algorithm for part-machine grouping in group technology," European Journal of Operational Research, Elsevier, vol. 69(3), pages 342-356, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Wu & Junjian Peng & Xiao Xiao & Shaomin Wu, 2021. "An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 707-728, March.
    2. Pablo Martinez-Juarez & Aline Chiabai & Cristina Suárez & Sonia Quiroga, 2019. "Insights on Urban and Periurban Adaptation Strategies Based on Stakeholders’ Perceptions on Hard and Soft Responses to Climate Change," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    3. A. Attila İşlier, 2015. "Cellular Manufacturing Systems: Organization, Trends and Innovative Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 13-26, December.
    4. Caballini, Claudia & Gracia, Maria D. & Mar-Ortiz, Julio & Sacone, Simona, 2020. "A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    6. Hachicha, Wafik & Masmoudi, Faouzi & Haddar, Mohamed, 2006. "Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach," MPRA Paper 3975, University Library of Munich, Germany, revised 04 Jan 2007.
    7. Angra, Surjit & Sehgal, Rakesh & Samsudeen Noori, Z., 2008. "Cellular manufacturing--A time-based analysis to the layout problem," International Journal of Production Economics, Elsevier, vol. 112(1), pages 427-438, March.
    8. Hanxin Feng & Tangbin Xia & Wen Da & Lifeng Xi & Ershun Pan, 2019. "Concurrent design of cell formation and scheduling with consideration of duplicate machines and alternative process routings," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 275-289, January.
    9. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    10. Boris Goldengorin & Dmitry Krushinsky & Jannes Slomp, 2012. "Flexible PMP Approach for Large-Size Cell Formation," Operations Research, INFORMS, vol. 60(5), pages 1157-1166, October.
    11. Marle, Franck & Vidal, Ludovic-Alexandre & Bocquet, Jean-Claude, 2013. "Interactions-based risk clustering methodologies and algorithms for complex project management," International Journal of Production Economics, Elsevier, vol. 142(2), pages 225-234.
    12. Dmitry Krushinsky & Boris Goldengorin, 2012. "An exact model for cell formation in group technology," Computational Management Science, Springer, vol. 9(3), pages 323-338, August.
    13. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    14. Wu, Tai-Hsi & Chang, Chin-Chih & Yeh, Jinn-Yi, 2009. "A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 669-688, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nair, G. Jayakrishnan & Narendran, T. T., 1997. "On the use of the asymptotic forms of the boolean matrix for designing cellular manufacturing systems -- An improved approach," European Journal of Operational Research, Elsevier, vol. 100(3), pages 429-440, August.
    2. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    3. Chen, Ja-Shen & Heragu, Sunderesh S., 1999. "Stepwise decomposition approaches for large scale cell formation problems," European Journal of Operational Research, Elsevier, vol. 113(1), pages 64-79, February.
    4. Rogers, David F. & Kulkarni, Shailesh S., 2005. "Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 160(2), pages 423-444, January.
    5. Hassan, Mohsen M. D., 1995. "Layout design in group technology manufacturing," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 173-188, March.
    6. Heragu, Sunderesh S. & Chen, Ja-Shen, 1998. "Optimal solution of cellular manufacturing system design: Benders' decomposition approach," European Journal of Operational Research, Elsevier, vol. 107(1), pages 175-192, May.
    7. Stawowy, Adam, 2006. "Evolutionary strategy for manufacturing cell design," Omega, Elsevier, vol. 34(1), pages 1-18, January.
    8. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    9. Manash Hazarika, 2023. "An improved genetic algorithm for the machine-part cell formation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 206-219, February.
    10. Ricardo Soto & Broderick Crawford & Rodrigo Olivares & César Carrasco & Eduardo Rodriguez-Tello & Carlos Castro & Fernando Paredes & Hanns de la Fuente-Mella, 2020. "A Reactive Population Approach on the Dolphin Echolocation Algorithm for Solving Cell Manufacturing Systems," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    11. Nsakanda, Aaron Luntala & Diaby, Moustapha & Price, Wilson L., 2006. "Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1051-1070, June.
    12. Li, Ming-Liang, 2003. "The algorithm for integrating all incidence matrices in multi-dimensional group technology," International Journal of Production Economics, Elsevier, vol. 86(2), pages 121-131, November.
    13. Papaioannou, Grammatoula & Wilson, John M., 2010. "The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 206(3), pages 509-521, November.
    14. E Erel & J B Ghosh & J T Simon, 2003. "New heuristic for the dynamic layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1275-1282, December.
    15. R Bhatnagar & V Saddikuti, 2010. "Models for cellular manufacturing systems design: matching processing requirements and operator capabilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 827-839, May.
    16. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    17. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    18. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.
    19. Jabbar, Amina M. & Abelson, Julia, 2011. "Development of a framework for effective community engagement in Ontario, Canada," Health Policy, Elsevier, vol. 101(1), pages 59-69, June.
    20. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:101:y:2006:i:2:p:329-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.