IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01525-w.html
   My bibliography  Save this article

Cloud automatic mechanical equipment based on D–T fuzzy control and internet of things

Author

Listed:
  • Jie Yao

    (Hunan Mechanical And Electrical Polytechnic)

  • Feng Wu

    (Hunan Mechanical And Electrical Polytechnic)

Abstract

With the emerging development of the automatic systems and the cloud platforms, the proper combination is the developing trend. Hence, design and innovation of automatic mechanical equipment based on the D–T fuzzy control system considering Internet of Things is demonstrated in this paper. In the process of R&D and manufacturing of modern automated machinery and equipment, we must also pay attention to the improvement of the overall quality of operators. Through incentive measures, the initiative and enthusiasm of the work are continuously improved, and finally the sustainable development of the machinery manufacturing industry is promoted. This paper gives the novel perspectives of enhancing basic model. We integrate the D–T fuzzy model to replace the kernel support vector machines to serve as the general flowchart for the model, the cloud system is implemented with the Internet of Things to serve as the support of the hardware. We compare the proposed model with the other platforms, the experimental results have shown that the designed system is robust and efficient.

Suggested Citation

  • Jie Yao & Feng Wu, 2022. "Cloud automatic mechanical equipment based on D–T fuzzy control and internet of things," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1696-1704, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01525-w
    DOI: 10.1007/s13198-021-01525-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01525-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01525-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Barbieri & Khan T. P. Nguyen & Roberto Diversi & Kamal Medjaher & Andrea Tilli, 2021. "RUL prediction for automatic machines: a mixed edge-cloud solution based on model-of-signals and particle filtering techniques," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1421-1440, June.
    2. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2021. "Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data," Energies, MDPI, vol. 14(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
    2. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    3. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    4. Anastasios I. Dounis, 2022. "Machine Intelligence in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-5, December.
    5. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    6. Pengcheng Xia & Yixiang Huang & Chengjin Qin & Chengliang Liu, 2024. "Towards prognostic generalization: a domain conditional invariance and specificity disentanglement network for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3459-3477, October.
    7. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    8. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    9. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Vasileios M. Laitsos & Lefteri H. Tsoukalas, 2021. "Enhanced Short-Term Load Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 14(22), pages 1-14, November.
    10. Dimitrios K. Panagiotou & Anastasios I. Dounis, 2022. "Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network," Energies, MDPI, vol. 15(17), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01525-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.