IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i3d10.1007_s13198-021-01205-9.html
   My bibliography  Save this article

Exploring user cognition difference and pleasure balance guidance method for product perceptible features in vehicle-mounted system

Author

Listed:
  • Chao Zhang

    (Changsha University of Science & Technology)

Abstract

The cognition difference and pleasure balance guidance method are studied for the vehicle-mounted human–computer interaction system to reduce the user and designers’ cognition differences. First, the perceivable innovation design is introduced, and the user-designers cognition correlation model is established based on perceivable product innovation. Then, the physiological signals of users are collected through related equipment, and the recognition model for users’ positive and negative emotions and physiological signals is constructed through the support vector machine (SVM) algorithm and the K nearest neighbor (KNN) algorithm. Finally, the pleasure balance guidance method is proposed based on the user and designers’ cognition differences. The experimental results show that the recognition rate of emotion extracted from wavelet packet energy using the KNN and the SVM algorithm is 80.66% and 76.23%, respectively. The recognition rate of physical load extracted from the time-domain features and wavelet packet energy features through the SVM algorithm is 79.51% and 57.23%, respectively. The results are of great engineering significance for the design of the automobile interaction system.

Suggested Citation

  • Chao Zhang, 2022. "Exploring user cognition difference and pleasure balance guidance method for product perceptible features in vehicle-mounted system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1019-1030, December.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01205-9
    DOI: 10.1007/s13198-021-01205-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01205-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01205-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Die Yin & Taifu Li & Zhiqiang Liao, 2020. "Research on the Evaluation Modeling Method of User Experience Quality under Uncertain Noise Environment," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, December.
    2. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    2. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    3. Ana C. Cebrián & Ricardo Salillas, 2021. "Forecasting High-Frequency River Level Series Using Double Switching Regression with ARMA Errors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 299-313, January.
    4. Yun Bai & Nejc Bezak & Klaudija Sapač & Mateja Klun & Jin Zhang, 2019. "Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4783-4797, November.
    5. Subbarayan Saravanan & Nagireddy Masthan Reddy & Quoc Bao Pham & Abdullah Alodah & Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi, 2023. "Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    6. Fatemeh Bakhshi Ostadkalayeh & Saba Moradi & Ali Asadi & Alireza Moghaddam Nia & Somayeh Taheri, 2023. "Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3111-3127, June.
    7. Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.
    8. M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.
    9. Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
    10. Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Dong-mei Xu & Chang-jun Liu & Qiang Ma, 2021. "An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4695-4726, November.
    11. Alireza Emadi & Reza Sobhani & Hossein Ahmadi & Arezoo Boroomandnia & Sarvin Zamanzad-Ghavidel & Hazi Mohammad Azamathulla, 2022. "Multivariate modeling of agricultural river water abstraction via novel integrated-wavelet methods in various climatic conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4845-4871, April.
    12. Maha Shabbir & Sohail Chand & Farhat Iqbal, 2022. "A Novel Hybrid Method for River Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 253-272, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01205-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.