IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01420-4.html
   My bibliography  Save this article

Numerical simulation of air distribution for monitoring the central air conditioning in large atrium

Author

Listed:
  • Lixia Wang

    (Shanxi Datong University)

  • Pawan Kumar

    (University of Johannesburg)

  • Mamookho Elizabeth Makhatha

    (University of Johannesburg)

  • Vishal Jagota

    (Madanapalle Institute of Technology and Science)

Abstract

In the modern construction industry, there is a need for environment friendly energy efficient buildings to support the idea of sustainability. This article investigates the numerical simulation of air distribution of central air conditioning in tall atrium using the CFD technology to simulate the air distribution in the atrium of the large hotel buildings. The optimal atrium design is achieved by numerical simulation of air distribution condition in large Atrium by checking the airflow velocity field as well as temperature field under different working conditions in summers. The precondition of fixed air volume was analyzed using the FLUENT software and change in the vent air supply perspective was realized. The airflow velocity field and temperature field were evaluated under different working conditions and the flow characteristics of lateral line 1-point temperature were compared between 300.5 and 301 K. The rest of the measuring point temperature fluctuates up and down at 300 K, line 2 measure point temperature between 300.5 and 301 K. The hotel atrium was tested on site and the measured value was taken as the initial parameter for numerical simulation. The results of simulation and measurement were compared and analyzed to verify the effectiveness and reliability of the simulated air distribution in large space buildings.

Suggested Citation

  • Lixia Wang & Pawan Kumar & Mamookho Elizabeth Makhatha & Vishal Jagota, 2022. "Numerical simulation of air distribution for monitoring the central air conditioning in large atrium," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 340-352, March.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01420-4
    DOI: 10.1007/s13198-021-01420-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01420-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01420-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Kapil Jairath & Navdeep Singh & Vishal Jagota & Mohammad Shabaz, 2021. "Compact Ultrawide Band Metamaterial-Inspired Split Ring Resonator Structure Loaded Band Notched Antenna," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, May.
    4. Fabio Fantozzi & Hassan Hamdi & Michele Rocca & Stefano Vegnuti, 2019. "Use of Automated Control Systems and Advanced Energy Simulations in the Design of Climate Responsive Educational Building for Mediterranean Area," Sustainability, MDPI, vol. 11(6), pages 1-22, March.
    5. Diego Palma Rojas, 2014. "Atrium building design: key aspects to improve their thermal performance on the Mediterranean climate of Santiago de Chile," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(4), pages 327-330.
    6. Majed Abuseif & Zhonghua Gou, 2018. "A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness," Energies, MDPI, vol. 11(11), pages 1-22, November.
    7. Reihaneh Aram & Halil Zafer Alibaba, 2019. "Thermal Comfort and Energy Performance of Atrium in Mediterranean Climate," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    8. Boutet, M.L. & Hernández, A.L. & Jacobo, G.J., 2020. "Methodology of quantitative analysis and diagnosis of higro-thermal and lighting monitoring for school buildings in a hot-humid mid-latitude climate," Renewable Energy, Elsevier, vol. 145(C), pages 2463-2476.
    9. Fan Wang & Abd Halid Abdullah, 2011. "Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 171-186, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Pan & Sheng Wang & Jiying Wang & Min Xiao & Zhirong Tan, 2022. "Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load," Energies, MDPI, vol. 15(24), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refaa Sokkar & Halil Z. Alibaba, 2020. "Thermal Comfort Improvement for Atrium Building with Double-Skin Skylight in the Mediterranean Climate," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    4. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    5. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    6. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    7. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    8. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    9. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    10. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    11. Arber Hoti & Lulzim Krasniqi, 2022. "Impact of international financial reporting standards adoption on the perception of investors to invest in small-to-medium enterprise adopting transparency in disclosure policies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 506-515, March.
    12. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    13. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    14. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    15. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    16. Seong-Il Park & Taek-Hyoung Ryu & Ick-Chang Choi & Jung-Sup Um, 2019. "Evaluating the Operational Potential of LRV Signatures Derived from UAV Imagery in Performance Evaluation of Cool Roofs," Energies, MDPI, vol. 12(14), pages 1-14, July.
    17. Mourshed, Monjur, 2016. "Climatic parameters for building energy applications: A temporal-geospatial assessment of temperature indicators," Renewable Energy, Elsevier, vol. 94(C), pages 55-71.
    18. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).
    19. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    20. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01420-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.