IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i3d10.1007_s13198-021-01087-x.html
   My bibliography  Save this article

Comparative study of recommender system approaches and movie recommendation using collaborative filtering

Author

Listed:
  • Taushif Anwar

    (Pondicherry University)

  • V. Uma

    (Pondicherry University)

Abstract

The increasing demand for personalized information has resulted in the development of the Recommender System (RS). RS has been widely utilized and broadly studied to suggest the interests of users and make an appropriate recommendation. This paper gives an overview of several types of recommendation approaches based on user preferences, ratings, domain knowledge, users demographic data, users context and also lists the advantages and disadvantages of each RS approach. In this paper, we also proposed the movie recommendation based on collaborative filtering and singular value decomposition plus-plus (SVD++). The proposed approach is compared with well-known machine learning approaches namely k nearest neighbor (K-NN), singular value decomposition (SVD) and Co-clustering. The proposed approach is experimentally verified using MovieLens 100 K datasets and error of the RS is measured using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The result shows that the proposed approach gives a lesser error rate with RMSE (0.9201) and MAE (0.7219). This approach also overcomes cold-start, data sparsity problems and provides them relevant items and services.

Suggested Citation

  • Taushif Anwar & V. Uma, 2021. "Comparative study of recommender system approaches and movie recommendation using collaborative filtering," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 426-436, June.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:3:d:10.1007_s13198-021-01087-x
    DOI: 10.1007/s13198-021-01087-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01087-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01087-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseinzadeh Aghdam, Mehdi, 2019. "Context-aware recommender systems using hierarchical hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 89-98.
    2. Adithya Thaduri & Uday Kumar & Ajit Kumar Verma, 2017. "Computational intelligence framework for context-aware decision making," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2146-2157, December.
    3. Surya Kant & Tripti Mahara, 2018. "Merging user and item based collaborative filtering to alleviate data sparsity," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 173-179, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakhi Saxena & Sharanjit Kaur & Harita Ahuja & Sunita Narang, 2024. "Leveraging item attribute popularity for group recommendation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2645-2655, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Gourav Jain & Tripti Mahara & S. C.Sharma, 2023. "Effective time context based collaborative filtering recommender system inspired by Gower’s coefficient," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 429-447, February.
    3. Zheng, Jing & Yu, Dongjie & Zhu, Bin & Tong, Changqing, 2022. "Learning hidden Markov models with unknown number of states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:3:d:10.1007_s13198-021-01087-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.