IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v518y2019icp89-98.html
   My bibliography  Save this article

Context-aware recommender systems using hierarchical hidden Markov model

Author

Listed:
  • Hosseinzadeh Aghdam, Mehdi

Abstract

Recommender systems often generate recommendations based on user’s prior preferences. Users’ preferences may change over time due to user mode change or context change, identification of such a change is important for generating personalized recommendations. Many earlier methods have been developed under the assumption that each user has a fixed pattern. Regardless of these changes, the recommendation may not match the user’s personal preference and this recommendation will not be useful to the user based on the current context of the user. Context-aware recommender systems deal with this problem by utilizing contextual information that affects user preferences and states. Using contextual information is challenging because it is not always possible to obtain all the contextual information. Also, adding various types of contexts to recommender systems increases its dimensionality and sparsity. This paper presents a novel hierarchical hidden Markov model to identify changes in user’s preferences over time by modeling the latent context of users. Using the user-selected items, the proposed method models the user as a hidden Markov process and considers the current context of the user as a hidden variable. The latent contexts are automatically learned for each user utilizing hidden Markov model on the data collected from the user’s feedback sequences. The results of the experiments, on the benchmark data sets, show that the proposed model has a better performance compared to other methods.

Suggested Citation

  • Hosseinzadeh Aghdam, Mehdi, 2019. "Context-aware recommender systems using hierarchical hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 89-98.
  • Handle: RePEc:eee:phsmap:v:518:y:2019:i:c:p:89-98
    DOI: 10.1016/j.physa.2018.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314705
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Jing & Yu, Dongjie & Zhu, Bin & Tong, Changqing, 2022. "Learning hidden Markov models with unknown number of states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    2. Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Taushif Anwar & V. Uma, 2021. "Comparative study of recommender system approaches and movie recommendation using collaborative filtering," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 426-436, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:518:y:2019:i:c:p:89-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.