IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v25y2016i2d10.1007_s10726-015-9444-8.html
   My bibliography  Save this article

A Hierarchical Clustering Approach Based on Three-Dimensional Gray Relational Analysis for Clustering a Large Group of Decision Makers with Double Information

Author

Listed:
  • Jianjun Zhu

    (Nanjing University of Aeronautics and Astronautics)

  • Shitao Zhang

    (Nanjing University of Aeronautics and Astronautics)

  • Ye Chen

    (Nanjing University of Aeronautics and Astronautics)

  • Lili Zhang

    (Nanjing University of Aeronautics and Astronautics)

Abstract

Two types of information, collectively referred to as double information, are usually required in management decision-making. The first is preference information expressed in a judgment matrix. The second is reference information expressed in a multi-attribute decision matrix. In this paper, we investigate large-scale group clustering problems with double information in group decision-making. We first establish a novel three-dimensional gray correlation degree index, which integrates the alternative decision-making vector, index vector and alternative preference vector, to fully excavate the correlation between decision makers with double information. We then develop a new clustering procedure combining three-dimensional gray relational analysis and the concept of hierarchical clustering. Moreover, a model for determining clustering centers is established on the basis of the maximum gray correlation degree within each cluster and minimum gray correlation degree among clusters. A heuristic algorithm for the model to identify the core decision maker in each cluster is proposed. Finally, we illustrate the applications of the developed procedures with a practical case. The rationality of the proposed method is demonstrated by comparing results with results obtained using other methods, including the traditional gray clustering method and hierarchical clustering method with single information; i.e., preference information or reference information.

Suggested Citation

  • Jianjun Zhu & Shitao Zhang & Ye Chen & Lili Zhang, 2016. "A Hierarchical Clustering Approach Based on Three-Dimensional Gray Relational Analysis for Clustering a Large Group of Decision Makers with Double Information," Group Decision and Negotiation, Springer, vol. 25(2), pages 325-354, March.
  • Handle: RePEc:spr:grdene:v:25:y:2016:i:2:d:10.1007_s10726-015-9444-8
    DOI: 10.1007/s10726-015-9444-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-015-9444-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-015-9444-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguaron, Juan & Moreno-Jimenez, Jose Maria, 2003. "The geometric consistency index: Approximated thresholds," European Journal of Operational Research, Elsevier, vol. 147(1), pages 137-145, May.
    2. Zeshui Xu & Xiaoqiang Cai, 2013. "On Consensus of Group Decision Making with Interval Utility Values and Interval Preference Orderings," Group Decision and Negotiation, Springer, vol. 22(6), pages 997-1019, November.
    3. Wang, Ying-Ming & Fan, Zhi-Ping & Hua, Zhongsheng, 2007. "A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 356-366, October.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    5. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2007. "Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan," Energy Policy, Elsevier, vol. 35(3), pages 1948-1955, March.
    6. Xiaolu Zhang & Zeshui Xu, 2015. "Hesitant fuzzy agglomerative hierarchical clustering algorithms," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 562-576, February.
    7. Meyer, Patrick & Olteanu, Alexandru-Liviu, 2013. "Formalizing and solving the problem of clustering in MCDA," European Journal of Operational Research, Elsevier, vol. 227(3), pages 494-502.
    8. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Hu-Chen & Li, Zhaojun & Zhang, Jian-Qing & You, Xiao-Yue, 2018. "A large group decision making approach for dependence assessment in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 135-144.
    2. Qifeng Wan & Xuanhua Xu & Xiaohong Chen & Jun Zhuang, 2020. "A Two-Stage Optimization Model for Large-Scale Group Decision-Making in Disaster Management: Minimizing Group Conflict and Maximizing Individual Satisfaction," Group Decision and Negotiation, Springer, vol. 29(5), pages 901-921, October.
    3. Ruben Heradio & David Fernandez-Amoros & Cristina Cerrada & Manuel J. Cobo, 2020. "Group Decision-Making Based on Artificial Intelligence: A Bibliometric Analysis," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    4. Modgil, Sachin & Gupta, Shivam & Sivarajah, Uthayasankar & Bhushan, Bharat, 2021. "Big data-enabled large-scale group decision making for circular economy: An emerging market context," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    6. Chenxi Zhang & Meng Zhao & Lichao Zhao & Qinfei Yuan, 2021. "A Consensus Model for Large-Scale Group Decision-Making Based on the Trust Relationship Considering Leadership Behaviors and Non-cooperative Behaviors," Group Decision and Negotiation, Springer, vol. 30(3), pages 553-586, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    2. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    3. Paul Thaddeus Kazibudzki, 2016. "An examination of performance relations among selected consistency measures for simulated pairwise judgments," Annals of Operations Research, Springer, vol. 244(2), pages 525-544, September.
    4. Rajshekhar G. Javalgi & Hemant K. Jain, 1988. "Integrating multiple criteria decision making models into the decision support system framework for marketing decisions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 575-596, December.
    5. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    6. Wu-E Yang & Chao-Qun Ma & Zhi-Qiu Han & Wen-Jun Chen, 2016. "Checking and adjusting order-consistency of linguistic pairwise comparison matrices for getting transitive preference relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 769-787, July.
    7. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    8. Lanndon A. Ocampo, 2019. "Applying fuzzy AHP–TOPSIS technique in identifying the content strategy of sustainable manufacturing for food production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2225-2251, October.
    9. Chao, Xiangrui & Kou, Gang & Li, Tie & Peng, Yi, 2018. "Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information," European Journal of Operational Research, Elsevier, vol. 265(1), pages 239-247.
    10. Chakhar, Salem & Ishizaka, Alessio & Thorpe, Andy & Cox, Joe & Nguyen, Thang & Ford, Liz, 2020. "Calculating the relative importance of condition attributes based on the characteristics of decision rules and attribute reducts: Application to crowdfunding," European Journal of Operational Research, Elsevier, vol. 286(2), pages 689-712.
    11. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    12. Peng Wu & Jinpei Liu & Ligang Zhou & Huayou Chen, 2022. "An Integrated Group Decision-Making Method with Hesitant Qualitative Information Based on DEA Cross-Efficiency and Priority Aggregation for Evaluating Factors Affecting a Resilient City," Group Decision and Negotiation, Springer, vol. 31(2), pages 293-316, April.
    13. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    14. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Łuczak, Aleksandra & Kozera, Agnieszka, 2021. "A model to assess the development priorities of local administrations through the hierarchy of strategic factors," Journal of Policy Modeling, Elsevier, vol. 43(2), pages 474-492.
    16. Ma, Jian & Fan, Zhi-Ping & Huang, Li-Hua, 1999. "A subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 112(2), pages 397-404, January.
    17. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    18. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    19. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    20. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:25:y:2016:i:2:d:10.1007_s10726-015-9444-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.