IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v244y2016i2d10.1007_s10479-016-2131-6.html
   My bibliography  Save this article

An examination of performance relations among selected consistency measures for simulated pairwise judgments

Author

Listed:
  • Paul Thaddeus Kazibudzki

    (Universite Internationale de Douala)

Abstract

A review of contemporary literature devoted to decision making support systems draws attention to the Analytic Hierarchy Process (AHP). At the core of the AHP are various prioritization procedures which elicit priorities for alternative solutions for complex decisional problems. Certainly, the procedures coincide when decision makers’ preferences of alternative solutions are cardinally transitive, otherwise the results differ. This is why consistency measurement of human judgments is so important. It has been scientifically proven that a high inconsistency of decision makers’ preferences concerning alternative solutions of decisional problems may lead to fallacious choices. Research verifies the thesis that consistency measures derived from different prioritization procedures are interrelated. It turns out that one of the independent consistency measures is extremely closely related to the consistency index embedded in original approach of the AHP. The main objective of this study is realized through the novel and sophisticated simulation algorithm designed for the AHP and executed within its exemplary decisional framework for three levels. The outcome of the research proves that consistency can be measured in various ways, but recently devised concepts can indicate better solutions as a result of significantly improved methodology.

Suggested Citation

  • Paul Thaddeus Kazibudzki, 2016. "An examination of performance relations among selected consistency measures for simulated pairwise judgments," Annals of Operations Research, Springer, vol. 244(2), pages 525-544, September.
  • Handle: RePEc:spr:annopr:v:244:y:2016:i:2:d:10.1007_s10479-016-2131-6
    DOI: 10.1007/s10479-016-2131-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2131-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2131-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    2. Sándor Bozóki & Linda Dezső & Attila Poesz & József Temesi, 2013. "Analysis of pairwise comparison matrices: an empirical research," Annals of Operations Research, Springer, vol. 211(1), pages 511-528, December.
    3. Matteo Brunelli & Luisa Canal & Michele Fedrizzi, 2013. "Inconsistency indices for pairwise comparison matrices: a numerical study," Annals of Operations Research, Springer, vol. 211(1), pages 493-509, December.
    4. Lin, Chang-Chun, 2007. "A revised framework for deriving preference values from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1145-1150, January.
    5. Changsheng Lin & Gang Kou & Daji Ergu, 2013. "An improved statistical approach for consistency test in AHP," Annals of Operations Research, Springer, vol. 211(1), pages 289-299, December.
    6. Hovanov, Nikolai V. & Kolari, James W. & Sokolov, Mikhail V., 2008. "Deriving weights from general pairwise comparison matrices," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 205-220, March.
    7. Aguaron, Juan & Moreno-Jimenez, Jose Maria, 2003. "The geometric consistency index: Approximated thresholds," European Journal of Operational Research, Elsevier, vol. 147(1), pages 137-145, May.
    8. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    9. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    10. Bana e Costa, Carlos A. & Vansnick, Jean-Claude, 2008. "A critical analysis of the eigenvalue method used to derive priorities in AHP," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1422-1428, June.
    11. Valdecy Pereira & Helder Costa, 2015. "Nonlinear programming applied to the reduction of inconsistency in the AHP method," Annals of Operations Research, Springer, vol. 229(1), pages 635-655, June.
    12. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Brunelli & Michele Fedrizzi, 2019. "A general formulation for some inconsistency indices of pairwise comparisons," Annals of Operations Research, Springer, vol. 274(1), pages 155-169, March.
    2. Pietro Amenta & Alessio Ishizaka & Antonio Lucadamo & Gabriella Marcarelli & Vijay Vyas, 2020. "Computing a common preference vector in a complex multi-actor and multi-group decision system in Analytic Hierarchy Process context," Annals of Operations Research, Springer, vol. 284(1), pages 33-62, January.
    3. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Amenta & Alessio Ishizaka & Antonio Lucadamo & Gabriella Marcarelli & Vijay Vyas, 2020. "Computing a common preference vector in a complex multi-actor and multi-group decision system in Analytic Hierarchy Process context," Annals of Operations Research, Springer, vol. 284(1), pages 33-62, January.
    2. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    3. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    4. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    5. Vladimír Bureš & Jiří Cabal & Pavel Čech & Karel Mls & Daniela Ponce, 2020. "The Influence of Criteria Selection Method on Consistency of Pairwise Comparison," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    6. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    7. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    8. Wu, Cheng-Ru & Lin, Chin-Tsai & Tsai, Pei-Hsuan, 2010. "Evaluating business performance of wealth management banks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 971-979, December.
    9. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    10. Idil Yavuz & Orrin Cooper, 2017. "A dynamic clustering method to improve the coherency of an ANP Supermatrix," Annals of Operations Research, Springer, vol. 254(1), pages 507-531, July.
    11. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    12. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    13. József Temesi, 2011. "Pairwise comparison matrices and the error-free property of the decision maker," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 239-249, June.
    14. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    15. Antonella Basso & Stefania Funari, 2020. "A three-system approach that integrates DEA, BSC, and AHP for museum evaluation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 413-441, December.
    16. Andrés Calizaya & Oliver Meixner & Lars Bengtsson & Ronny Berndtsson, 2010. "Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2267-2289, August.
    17. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    18. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    19. Wu-E Yang & Chao-Qun Ma & Zhi-Qiu Han & Wen-Jun Chen, 2016. "Checking and adjusting order-consistency of linguistic pairwise comparison matrices for getting transitive preference relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 769-787, July.
    20. Ting Kuo & Ming-Hui Chen, 2022. "On Indeterminacy of Interval Multiplicative Pairwise Comparison Matrix," Mathematics, MDPI, vol. 10(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:244:y:2016:i:2:d:10.1007_s10479-016-2131-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.