IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i3p562-576.html
   My bibliography  Save this article

Hesitant fuzzy agglomerative hierarchical clustering algorithms

Author

Listed:
  • Xiaolu Zhang
  • Zeshui Xu

Abstract

Recently, hesitant fuzzy sets (HFSs) have been studied by many researchers as a powerful tool to describe and deal with uncertain data, but relatively, very few studies focus on the clustering analysis of HFSs. In this paper, we propose a novel hesitant fuzzy agglomerative hierarchical clustering algorithm for HFSs. The algorithm considers each of the given HFSs as a unique cluster in the first stage, and then compares each pair of the HFSs by utilising the weighted Hamming distance or the weighted Euclidean distance. The two clusters with smaller distance are jointed. The procedure is then repeated time and again until the desirable number of clusters is achieved. Moreover, we extend the algorithm to cluster the interval-valued hesitant fuzzy sets, and finally illustrate the effectiveness of our clustering algorithms by experimental results.

Suggested Citation

  • Xiaolu Zhang & Zeshui Xu, 2015. "Hesitant fuzzy agglomerative hierarchical clustering algorithms," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 562-576, February.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:562-576
    DOI: 10.1080/00207721.2013.797037
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.797037
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.797037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqiang Liu & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Transformer Fault Early Warning Analysis Based on Hierarchical Clustering Combined with Decision Trees," Energies, MDPI, vol. 16(3), pages 1-14, January.
    2. Wang Feng, 2019. "Aggregation Similarity Measure Based on Hesitant Fuzzy Closeness Degree and Its Application to Clustering Analysis," Journal of Systems Science and Information, De Gruyter, vol. 7(1), pages 70-89, February.
    3. Liu, Jiayue & Ye, Jimin & E, Jianwei, 2023. "A multi-scale forecasting model for CPI based on independent component analysis and non-linear autoregressive neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Jianjun Zhu & Shitao Zhang & Ye Chen & Lili Zhang, 2016. "A Hierarchical Clustering Approach Based on Three-Dimensional Gray Relational Analysis for Clustering a Large Group of Decision Makers with Double Information," Group Decision and Negotiation, Springer, vol. 25(2), pages 325-354, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:562-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.