IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v23y2014i4d10.1007_s10726-012-9316-4.html
   My bibliography  Save this article

Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information

Author

Listed:
  • Jian-qiang Wang

    (Central South University)

  • Zhi-qiu Han

    (Central South University)

  • Hong-yu Zhang

    (Central South University)

Abstract

For problems in multi-criteria group decision-making (MCGDM), this paper defines intuitionistic interval numbers, and the operational laws and comparison method of it. Some intuitionistic interval information aggregation operators are proposed, such as intuitionistic interval weighted arithmetic averaging operator, intuitionistic interval weighted geometric averaging operator, intuitionistic interval ordered weighted averaging operator, intuitionistic interval heavy averaging operator and intuitionistic interval aggregating operator. Then, based on intuitionistic interval fuzzy information, a method is developed to handle the problems in MCGDM. In this method, by applying the knowledge level of the experts to the decision making problem, the model of maximizing comprehensive membership coefficient is constructed to determine the weights of decision makers. By calculating the distances to the ideal and negative ideal solutions, the comprehensive attribute values and the rank of the alternatives can be obtained. Finally, an example is provided to demonstrate the feasibility and effectiveness of the proposed method.

Suggested Citation

  • Jian-qiang Wang & Zhi-qiu Han & Hong-yu Zhang, 2014. "Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information," Group Decision and Negotiation, Springer, vol. 23(4), pages 715-733, July.
  • Handle: RePEc:spr:grdene:v:23:y:2014:i:4:d:10.1007_s10726-012-9316-4
    DOI: 10.1007/s10726-012-9316-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-012-9316-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-012-9316-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Contreras, 2012. "Ordered Weighted Disagreement Functions," Group Decision and Negotiation, Springer, vol. 21(3), pages 345-361, May.
    2. Ye, Jun, 2010. "Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 202-204, August.
    3. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    4. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    5. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    6. Zeshui Xu & Xiaoqiang Cai, 2012. "Uncertain Power Average Operators for Aggregating Interval Fuzzy Preference Relations," Group Decision and Negotiation, Springer, vol. 21(3), pages 381-397, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    2. Juan-Juan Peng & Jian-Qiang Wang & Xiao-Hui Wu, 2016. "Novel Multi-criteria Decision-making Approaches Based on Hesitant Fuzzy Sets and Prospect Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 621-643, May.
    3. Xiayu Tong & Zhou-Jing Wang, 2016. "A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection," IJERPH, MDPI, vol. 13(9), pages 1-16, September.
    4. Chao Song & Jian-Qiang Wang & Jun-Bo Li, 2020. "New Framework for Quality Function Deployment Using Linguistic Z-Numbers," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    5. Jian Wu, 2016. "Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function," Group Decision and Negotiation, Springer, vol. 25(2), pages 399-420, March.
    6. Dongsheng Xu & Xiangxiang Cui & Huaxiang Xian, 2020. "An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    7. Ren, Tiantian & Wang, Na & Xiao, Helu & Zhou, Zhongbao, 2024. "Efficiency of funding to rural revitalization and regional heterogeneity of technologies in China: Dynamic network nonconvex metafrontiers," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    8. Yi Yang & Jiaying Gu & Siyu Huang & Meilin Wen & Yong Qin, 2022. "Application of Uncertain AHP Method in Analyzing Travel Time Belief Reliability in Transportation Network," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    9. Nassereddine, M. & Eskandari, H., 2017. "An integrated MCDM approach to evaluate public transportation systems in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 427-439.
    10. Peide Liu & Lili Zhang & Xi Liu & Peng Wang, 2016. "Multi-Valued Neutrosophic Number Bonferroni Mean Operators with their Applications in Multiple Attribute Group Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1181-1210, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    2. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    3. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    4. Zeshui Xu & Xiaoqiang Cai, 2013. "On Consensus of Group Decision Making with Interval Utility Values and Interval Preference Orderings," Group Decision and Negotiation, Springer, vol. 22(6), pages 997-1019, November.
    5. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    6. May, Jerrold H. & Shang, Jennifer & Tjader, Youxu Cai & Vargas, Luis G., 2013. "A new methodology for sensitivity and stability analysis of analytic network models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 180-188.
    7. Fatih Tüysüz, 2018. "Simulated Hesitant Fuzzy Linguistic Term Sets-Based Approach for Modeling Uncertainty in AHP Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 801-817, May.
    8. Ahn, Byeong Seok, 2017. "The analytic hierarchy process with interval preference statements," Omega, Elsevier, vol. 67(C), pages 177-185.
    9. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    10. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. Maciej Nowak, 2010. "Interactive Multicriteria Decision Aiding Under Risk—Methods and Applications," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(1), pages 69-91, October.
    12. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    13. Ji-Hee Lee & Woo-Young Chun & Jun-Ho Choi, 2021. "Weighting the Attributes of Human-Related Activities for Fire Safety Measures in Historic Villages," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    14. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    15. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    16. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    17. Stefanos Dosis & George P. Petropoulos & Kleomenis Kalogeropoulos, 2023. "A Geospatial Approach to Identify and Evaluate Ecological Restoration Sites in Post-Fire Landscapes," Land, MDPI, vol. 12(12), pages 1-23, December.
    18. Zaras, Kazimierz, 2001. "Rough approximation of a preference relation by a multi-attribute stochastic dominance for determinist and stochastic evaluation problems," European Journal of Operational Research, Elsevier, vol. 130(2), pages 305-314, April.
    19. Sevastjanov, P. & Figat, P., 2007. "Aggregation of aggregating modes in MCDM: Synthesis of Type 2 and Level 2 fuzzy sets," Omega, Elsevier, vol. 35(5), pages 505-523, October.
    20. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:23:y:2014:i:4:d:10.1007_s10726-012-9316-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.