IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v21y2022i1d10.1007_s10700-021-09357-w.html
   My bibliography  Save this article

A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making

Author

Listed:
  • Min Xue

    (Hefei University of Technology
    Ministry of Education
    Ministry of Education Engineering Research Center for Intelligent Decision-Making and Information System Technologies)

  • Chao Fu

    (Hefei University of Technology
    Ministry of Education
    Ministry of Education Engineering Research Center for Intelligent Decision-Making and Information System Technologies)

  • Shanlin Yang

    (Hefei University of Technology
    Ministry of Education
    Ministry of Education Engineering Research Center for Intelligent Decision-Making and Information System Technologies)

Abstract

When a decision-maker prefers to compare different alternatives in pairs to handle real situations, there are many different expression styles that can be used. Two representative expression styles are the probabilistic linguistic preference relation (PLPR), which originates from the fuzzy linguistic approach and the distributed preference relation (DPR), which originates from the evidential reasoning approach. Although these two expression styles look quite similar, their meanings, operations, and relevant decision making processes are significantly different. This presents the decision-maker with the challenge of selecting either PLPRs or DPRs in different real cases. To address this issue, this paper provides a detailed analysis of the similarities and differences between PLPRs and DPRs. The analysis is conducted from five perspectives, including modeling of decision making problems, handling of uncertainty, consistency between preference relations, information aggregation, and elicitation process. An engineer selection problem for an automobile manufacturing enterprise is investigated to demonstrate how to appropriately select PLPRs or DPRs to model and analyze decision making problems in real situations with consideration for the preferences of decision-makers.

Suggested Citation

  • Min Xue & Chao Fu & Shanlin Yang, 2022. "A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 71-97, March.
  • Handle: RePEc:spr:fuzodm:v:21:y:2022:i:1:d:10.1007_s10700-021-09357-w
    DOI: 10.1007/s10700-021-09357-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-021-09357-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-021-09357-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    2. Hong-gang Peng & Jian-qiang Wang, 2020. "Multi-criteria sorting decision making based on dominance and opposition relations with probabilistic linguistic information," Fuzzy Optimization and Decision Making, Springer, vol. 19(4), pages 435-470, December.
    3. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    4. Huchang Liao & Xiaomei Mi & Zeshui Xu, 2020. "A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 81-134, March.
    5. Herrera, F. & Herrera-Viedma, E. & Chiclana, F., 2001. "Multiperson decision-making based on multiplicative preference relations," European Journal of Operational Research, Elsevier, vol. 129(2), pages 372-385, March.
    6. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    7. Pei Liang & Junhua Hu & Bo Li & Yongmei Liu & Xiaohong Chen, 2020. "A group decision making with probability linguistic preference relations based on nonlinear optimization model and fuzzy cooperative games," Fuzzy Optimization and Decision Making, Springer, vol. 19(4), pages 499-528, December.
    8. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.
    9. Chao Fu & Dong-Ling Xu & Shan-Lin Yang, 2016. "Distributed preference relations for multiple attribute decision analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(3), pages 457-473, March.
    10. Na Yue & Dongrui Wu & Jialiang Xie & Shuili Chen, 2020. "Probabilistic linguistic multi-criteria decision-making based on double information under imperfect conditions," Fuzzy Optimization and Decision Making, Springer, vol. 19(4), pages 391-433, December.
    11. Liao, Huchang & Wu, Xingli & Mi, Xiaomei & Herrera, Francisco, 2020. "An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule," Omega, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Xiao & Shouwen Wu & Chunsheng Cui, 2022. "The Research on Consistency Checking and Improvement of Probabilistic Linguistic Preference Relation Based on Similarity Measure and Minimum Adjustment Model," Mathematics, MDPI, vol. 10(9), pages 1-18, April.
    2. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    3. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    4. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    5. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    6. Wang, Ying-Ming & Parkan, Celik, 2008. "Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1476-1486, June.
    7. S. Lipovetsky, 2009. "Global Priority Estimation in Multiperson Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 77-91, January.
    8. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    9. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    10. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    11. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    12. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    13. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
    14. Xiaohong Chen & Hui Wang & Xihua Li, 2024. "Doctor recommendation under probabilistic linguistic environment considering patient’s risk preference," Annals of Operations Research, Springer, vol. 341(1), pages 555-581, October.
    15. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    16. Qianli Zhou & Hongming Mo & Yong Deng, 2020. "A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis," Mathematics, MDPI, vol. 8(1), pages 1-20, January.
    17. Tien-Chin Wang & Ying-Ling Lin, 2009. "Using a Multi-Criteria Group Decision Making Approach to Select Merged Strategies for Commercial Banks," Group Decision and Negotiation, Springer, vol. 18(6), pages 519-536, November.
    18. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    19. Feifei Jin & Zhiwei Ni & Reza Langari & Huayou Chen, 2020. "Consistency Improvement-Driven Decision-Making Methods with Probabilistic Multiplicative Preference Relations," Group Decision and Negotiation, Springer, vol. 29(2), pages 371-397, April.
    20. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:21:y:2022:i:1:d:10.1007_s10700-021-09357-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.