Machine learning predictivity applied to consumer creditworthiness
Author
Abstract
Suggested Citation
DOI: 10.1186/s43093-020-00041-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
- Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anil Kumar & Suneel Sharma & Mehregan Mahdavi, 2021. "Machine Learning (ML) Technologies for Digital Credit Scoring in Rural Finance: A Literature Review," Risks, MDPI, vol. 9(11), pages 1-15, October.
- Ionuț Nica & Daniela Blană Alexandru & Simona Liliana Paramon Crăciunescu & Ștefan Ionescu, 2021. "Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
- Seyyide Doğan & Yasin Büyükkör & Murat Atan, 2022. "A comparative study of corporate credit ratings prediction with machine learning," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 25-47.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ekaterina V. Orlova, 2021. "Methodology and Models for Individuals’ Creditworthiness Management Using Digital Footprint Data and Machine Learning Methods," Mathematics, MDPI, vol. 9(15), pages 1-28, August.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
- Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
- Flood, Mark D. & Lemieux, Victoria L. & Varga, Margaret & William Wong, B.L., 2016.
"The application of visual analytics to financial stability monitoring,"
Journal of Financial Stability, Elsevier, vol. 27(C), pages 180-197.
- Mark D. Flood & Victoria L. Lemieux & Margaret Varga & B.L. William Wong, 2014. "The Application of Visual Analytics to Financial Stability Monitoring," Working Papers 14-02, Office of Financial Research, US Department of the Treasury, revised 07 Oct 2014.
- Cristian KEVORCHIAN & Camelia GAVRILESCU & Gheorghe HURDUZEU, 2015. "An Approach Based On Big Data And Machine Learning For Optimizing The Management Of Agricultural Production Risks," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 12(2), pages 117-128.
- Hinterlang, Natascha & Hollmayr, Josef, 2022. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Journal of Macroeconomics, Elsevier, vol. 74(C).
- Aussenegg, Wolfgang & Resch, Florian & Winkler, Gerhard, 2011. "Pitfalls and remedies in testing the calibration quality of rating systems," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 698-708, March.
- Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016.
"Risk and risk management in the credit card industry,"
Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
- Florentin Butaru & QingQing Chen & Brian Clark & Sanmay Das & Andrew W. Lo & Akhtar Siddique, 2015. "Risk and Risk Management in the Credit Card Industry," NBER Working Papers 21305, National Bureau of Economic Research, Inc.
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
- Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
- Yang Liu & Fei Huang & Lili Ma & Qingguo Zeng & Jiale Shi, 2024. "Credit scoring prediction leveraging interpretable ensemble learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 286-308, March.
- Huang, Yiping & Li, Zhenhua & Qiu, Han & Tao, Sun & Wang, Xue & Zhang, Longmei, 2023. "BigTech credit risk assessment for SMEs," China Economic Review, Elsevier, vol. 81(C).
- Òscar Jordà & Moritz Schularick & Alan M Taylor, 2011.
"Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(2), pages 340-378, June.
- Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2010. "Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons," NBER Working Papers 16567, National Bureau of Economic Research, Inc.
More about this item
Keywords
Machine learning; Credit risk; Consumer lending; Default prediction; Performance analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:futbus:v:6:y:2020:i:1:d:10.1186_s43093-020-00041-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.