IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i3d10.1007_s10696-021-09430-x.html
   My bibliography  Save this article

AI for in-line vehicle sequence controlling: development and evaluation of an adaptive machine learning artifact to predict sequence deviations in a mixed-model production line

Author

Listed:
  • Maximilian Stauder

    (Karlsruhe Institute of Technology (KIT))

  • Niklas Kühl

    (Karlsruhe Institute of Technology (KIT))

Abstract

Customers in the manufacturing sector, especially in the automotive industry, have a high demand for individualized products at price levels comparable to traditional mass-production. The contrary objectives of providing a variety of products and operating at minimum costs have introduced a high degree of production planning and control mechanisms based on a stable order sequence for mixed-model assembly lines. A major threat to this development is sequence scrambling, triggered by both operational and product-related root causes. Despite the introduction of Just-in-time and fixed production times, the problem of sequence scrambling remains partially unresolved in the automotive industry. Negative downstream effects range from disruptions in the Just-in-sequence supply chain, to a discontinuation of the production process. A precise prediction of sequence deviations at an early stage allows the introduction of counteractions to stabilize the sequence before disorder emerges. While procedural causes are widely addressed in research, the work at hand requires a different perspective involving a product-related view. Built on unique data from a real-world global automotive manufacturer, a supervised classification model is trained and evaluated. This includes all the necessary steps to design, implement, and assess an AI-artifact, as well as data gathering, preprocessing, algorithm selection, and evaluation. To ensure long-term prediction stability, we include a continuous learning module to counter data drifts. We show that up to 50% of the major deviations can be predicted in advance. However, we do not consider any process-related information, such as machine conditions and shift plans, but solely focus on the exploitation of product features like body type, power train, color, and special equipment.

Suggested Citation

  • Maximilian Stauder & Niklas Kühl, 2022. "AI for in-line vehicle sequence controlling: development and evaluation of an adaptive machine learning artifact to predict sequence deviations in a mixed-model production line," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 709-747, September.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:3:d:10.1007_s10696-021-09430-x
    DOI: 10.1007/s10696-021-09430-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09430-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09430-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    2. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    3. repec:dau:papers:123456789/2861 is not listed on IDEAS
    4. Kühl, N. & Goutier, Marc & Hirt, R. & Satzger, G., 2019. "Machine learning in artificial intelligence: Towards a common understanding," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130117, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Joe Miemczyk & Thomas Stablein & Mathias Holweg, 2011. "Theoretical versus actual product variety: How much customisation do customers really demand?," Post-Print hal-00771841, HAL.
    6. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    7. Christian Franz & Achim Koberstein & Leena Suhl, 2015. "Dynamic resequencing at mixed-model assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 53(11), pages 3433-3447, June.
    8. Jayashankar M. Swaminathan & Thomas R. Nitsch, 2007. "Managing Product Variety in Automobile Assembly: The Importance of the Sequencing Point," Interfaces, INFORMS, vol. 37(4), pages 324-333, August.
    9. Ullah Saif & Zailin Guan & Li Zhang & Fei Zhang & Baoxi Wang & Jahanzaib Mirza, 2019. "Multi-objective artificial bee colony algorithm for order oriented simultaneous sequencing and balancing of multi-mixed model assembly line," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1195-1220, March.
    10. Rudolf, Gábor & Noyan, Nilay & Giard, Vincent, 2014. "Modeling sequence scrambling and related phenomena in mixed-model production lines," European Journal of Operational Research, Elsevier, vol. 237(1), pages 177-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taube, F. & Minner, S., 2018. "Resequencing mixed-model assembly lines with restoration to customer orders," Omega, Elsevier, vol. 78(C), pages 99-111.
    2. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    3. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    4. Ramírez Palencia, Alberto E. & Mejía Delgadillo, Gonzalo E., 2012. "A computer application for a bus body assembly line using Genetic Algorithms," International Journal of Production Economics, Elsevier, vol. 140(1), pages 431-438.
    5. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    6. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    7. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    9. Elahi, Mirza M. Lutfe & Rajpurohit, Karthik & Rosenberger, Jay M. & Zaruba, Gergely & Priest, John, 2015. "Optimizing real-time vehicle sequencing of a paint shop conveyor system," Omega, Elsevier, vol. 55(C), pages 61-72.
    10. Rudolf, Gábor & Noyan, Nilay & Giard, Vincent, 2014. "Modeling sequence scrambling and related phenomena in mixed-model production lines," European Journal of Operational Research, Elsevier, vol. 237(1), pages 177-195.
    11. Dominik Kress & Sebastian Meiswinkel & Erwin Pesch, 2018. "Mechanism design for machine scheduling problems: classification and literature overview," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 583-611, July.
    12. Maico Roris Severino & Moacir Godinho Filho, 2019. "POLCA system for supply chain management: simulation in the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1271-1289, March.
    13. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.
    14. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    15. Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
    16. Pontes, Lara & Neves, Carlos & Subramanian, Anand & Battarra, Maria, 2024. "The maximum length car sequencing problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 707-717.
    17. Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
    18. Andrea Maria Zanchettin, 2022. "Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 293-316, June.
    19. Zixiang Li & Mukund Nilakantan Janardhanan & S. G. Ponnambalam, 2021. "Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 989-1007, April.
    20. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:3:d:10.1007_s10696-021-09430-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.