IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i2d10.1007_s10696-021-09443-6.html
   My bibliography  Save this article

Anticipating technical car sequencing rules in the master production scheduling of mixed-model assembly lines

Author

Listed:
  • Thorben Krueger

    (Volkswagen AG)

  • Achim Koberstein

    (Volkswagen AG
    Europa-Universität Viadrina Frankfurt (Oder))

  • Norbert Bittner

    (Volkswagen AG)

Abstract

In this paper, we propose a new linear programming-based approach that enables the consideration of technical car sequencing rules in the master production scheduling of mixed-model assembly lines at a much higher level of detail than previous approaches. To this end, we investigate certain interdependencies of car sequencing rules, which have largely been neglected, both in practice and in the research literature. We illustrate the existence and impact of these interdependencies and show that they induce additional implicit constraints, which can be represented by linear inequalities and incorporated into linear optimization models for master production scheduling. In a numerical study, we evaluate the approach and show, that it can significantly reduce sequencing violations compared to existing approaches.

Suggested Citation

  • Thorben Krueger & Achim Koberstein & Norbert Bittner, 2022. "Anticipating technical car sequencing rules in the master production scheduling of mixed-model assembly lines," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 351-407, June.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:2:d:10.1007_s10696-021-09443-6
    DOI: 10.1007/s10696-021-09443-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09443-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09443-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estellon, Bertrand & Gardi, Frédéric & Nouioua, Karim, 2008. "Two local search approaches for solving real-life car sequencing problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 928-944, December.
    2. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    3. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    4. Bautista, Joaquin & Cano, Jaime, 2008. "Minimizing work overload in mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 112(1), pages 177-191, March.
    5. Volling, Thomas & Spengler, Thomas S., 2011. "Modeling and simulation of order-driven planning policies in build-to-order automobile production," International Journal of Production Economics, Elsevier, vol. 131(1), pages 183-193, May.
    6. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    7. Meyr, H., 2004. "Supply chain planning in the German automotive industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36062, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.
    2. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    3. Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.
    4. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    5. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    6. Pontes, Lara & Neves, Carlos & Subramanian, Anand & Battarra, Maria, 2024. "The maximum length car sequencing problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 707-717.
    7. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    8. Rui Zhang, 2017. "Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach," IJERPH, MDPI, vol. 15(1), pages 1-32, December.
    9. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    10. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    11. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    12. Buergin, Jens & Hammerschmidt, Andreas & Hao, Han & Kramer, Sergej & Tutsch, Hansjoerg & Lanza, Gisela, 2019. "Robust order planning with planned orders for multi-variant series production in a production network," International Journal of Production Economics, Elsevier, vol. 210(C), pages 107-119.
    13. Andrea Borenich & Peter Greistorfer & Marc Reimann, 2020. "Model-based production cost estimation to support bid processes: an automotive case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 841-868, September.
    14. Golle, Uli & Boysen, Nils & Rothlauf, Franz, 2010. "Analysis and design of sequencing rules for car sequencing," European Journal of Operational Research, Elsevier, vol. 206(3), pages 579-585, November.
    15. Eivind Jahren & Roberto Asín Achá, 2018. "A column generation approach and new bounds for the car sequencing problem," Annals of Operations Research, Springer, vol. 264(1), pages 193-211, May.
    16. Volling, Thomas & Matzke, Andreas & Grunewald, Martin & Spengler, Thomas S., 2013. "Planning of capacities and orders in build-to-order automobile production: A review," European Journal of Operational Research, Elsevier, vol. 224(2), pages 240-260.
    17. Elahi, Mirza M. Lutfe & Rajpurohit, Karthik & Rosenberger, Jay M. & Zaruba, Gergely & Priest, John, 2015. "Optimizing real-time vehicle sequencing of a paint shop conveyor system," Omega, Elsevier, vol. 55(C), pages 61-72.
    18. Yu, Yugang & Huang, George Q., 2010. "Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family," European Journal of Operational Research, Elsevier, vol. 206(2), pages 361-373, October.
    19. Pilar I. Vidal-Carreras & Jose P. Garcia-Sabater & Julio J. Garcia-Sabater, 2017. "A practical model for managing inventories with unknown costs and a budget constraint," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 118-129, January.
    20. Enrico Teich & Thorsten Claus, 2017. "Measurement of Load and Capacity Flexibility in Manufacturing," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(4), pages 291-302, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:2:d:10.1007_s10696-021-09443-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.