IDEAS home Printed from https://ideas.repec.org/a/vrs/manmar/v12y2017i1p1-11n1.html
   My bibliography  Save this article

A new optimization model for market basket analysis with allocation considerations: A genetic algorithm solution approach

Author

Listed:
  • Heydari Majeed

    (University of Zanjan, Zanjan, Iran (Islamic Republic of))

  • Yousefli Amir

    (Imam Khomeini International University, Qazvin, Iran (Islamic Republic of))

Abstract

Nowadays market basket analysis is one of the interested research areas of the data mining that has received more attention by researchers. But, most of the related research focused on the traditional and heuristic algorithms with limited factors that are not the only influential factors of the basket market analysis. In this paper to efficient modeling and analysis of the market basket data, the optimization model is proposed with considering allocation parameter as one of the important and effectual factors of the selling rate. The genetic algorithm approach is applied to solve the formulated non-linear binary programming problem and a numerical example is used to illustrate the presented model. The provided results reveal that the obtained solutions seem to be more realistic and applicable.

Suggested Citation

  • Heydari Majeed & Yousefli Amir, 2017. "A new optimization model for market basket analysis with allocation considerations: A genetic algorithm solution approach," Management & Marketing, Sciendo, vol. 12(1), pages 1-11, March.
  • Handle: RePEc:vrs:manmar:v:12:y:2017:i:1:p:1-11:n:1
    DOI: 10.1515/mmcks-2017-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mmcks-2017-0001
    Download Restriction: no

    File URL: https://libkey.io/10.1515/mmcks-2017-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erjen van Nierop & Dennis Fok & Philip Hans Franses, 2008. "Interaction Between Shelf Layout and Marketing Effectiveness and Its Impact on Optimizing Shelf Arrangements," Marketing Science, INFORMS, vol. 27(6), pages 1065-1082, 11-12.
    2. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    3. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.
    4. Alina BARBU, 2013. "Eight contemporary trends in the market research industry," Management & Marketing, Economic Publishing House, vol. 8(3), Autumn.
    5. Robert Russell & Timothy Urban, 2010. "The location and allocation of products and product families on retail shelves," Annals of Operations Research, Springer, vol. 179(1), pages 131-147, September.
    6. O. L. Mangasarian, 1965. "Linear and Nonlinear Separation of Patterns by Linear Programming," Operations Research, INFORMS, vol. 13(3), pages 444-452, June.
    7. Balaji Padmanabhan & Alexander Tuzhilin, 2003. "On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities," Management Science, INFORMS, vol. 49(10), pages 1327-1343, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    2. Boschetti, Marco A. & Golfarelli, Matteo & Graziani, Simone, 2020. "An exact method for shrinking pivot tables," Omega, Elsevier, vol. 93(C).
    3. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.
    4. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    5. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    6. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    7. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    8. Saglam, Burcu & Salman, F. Sibel & Sayin, Serpil & Turkay, Metin, 2006. "A mixed-integer programming approach to the clustering problem with an application in customer segmentation," European Journal of Operational Research, Elsevier, vol. 173(3), pages 866-879, September.
    9. B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
    10. Kaiquan Xu & Stephen Shaoyi Liao & Raymond Y. K. Lau & J. Leon Zhao, 2014. "Effective Active Learning Strategies for the Use of Large-Margin Classifiers in Semantic Annotation: An Optimal Parameter Discovery Perspective," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 461-483, August.
    11. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    12. Kateryna Czerniachowska, 2022. "A genetic algorithm for the retail shelf space allocation problem with virtual segments," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 364-412, March.
    13. Cassioli, A. & Chiavaioli, A. & Manes, C. & Sciandrone, M., 2013. "An incremental least squares algorithm for large scale linear classification," European Journal of Operational Research, Elsevier, vol. 224(3), pages 560-565.
    14. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    15. Gecili, Hakan & Parikh, Pratik J., 2022. "Joint shelf design and shelf space allocation problem for retailers," Omega, Elsevier, vol. 111(C).
    16. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    17. Caglar Gencosman, Burcu & Begen, Mehmet A., 2022. "Exact optimization and decomposition approaches for shelf space allocation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 432-447.
    18. Balaji Padmanabhan & Alexander Tuzhilin, 2003. "On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities," Management Science, INFORMS, vol. 49(10), pages 1327-1343, October.
    19. Z. R. Gabidullina, 2013. "A Linear Separability Criterion for Sets of Euclidean Space," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 145-171, July.
    20. Wanpracha Art Chaovalitwongse, 2008. "Novel quadratic programming approach for time series clustering with biomedical application," Journal of Combinatorial Optimization, Springer, vol. 15(3), pages 225-241, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:manmar:v:12:y:2017:i:1:p:1-11:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.