IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v58y2012i12p2292-2308.html
   My bibliography  Save this article

Pathwise Optimization for Optimal Stopping Problems

Author

Listed:
  • Vijay V. Desai

    (Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

  • Vivek F. Farias

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Ciamac C. Moallemi

    (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce upper and lower bounds on the optimal value (the "price") of a high-dimensional optimal stopping problem. The PO method builds on a dual characterization of optimal stopping problems as optimization problems over the space of martingales, which we dub the martingale duality approach. We demonstrate via numerical experiments that the PO method produces upper bounds of a quality comparable with state-of-the-art approaches, but in a fraction of the time required for those approaches. As a by-product, it yields lower bounds (and suboptimal exercise policies) that are substantially superior to those produced by state-of-the-art methods. The PO method thus constitutes a practical and desirable approach to high-dimensional pricing problems. Furthermore, we develop an approximation theory relevant to martingale duality approaches in general and the PO method in particular. Our analysis provides a guarantee on the quality of upper bounds resulting from these approaches and identifies three key determinants of their performance: the quality of an input value function approximation, the square root of the effective time horizon of the problem, and a certain spectral measure of "predictability" of the underlying Markov chain. As a corollary to this analysis we develop approximation guarantees specific to the PO method. Finally, we view the PO method and several approximate dynamic programming methods for high-dimensional pricing problems through a common lens and in doing so show that the PO method dominates those alternatives. This paper was accepted by Wei Xiong, stochastic models and simulation.

Suggested Citation

  • Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
  • Handle: RePEc:inm:ormnsc:v:58:y:2012:i:12:p:2292-2308
    DOI: 10.1287/mnsc.1120.1551
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1120.1551
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1120.1551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nan Chen & Paul Glasserman, 2007. "Additive and multiplicative duals for American option pricing," Finance and Stochastics, Springer, vol. 11(2), pages 153-179, April.
    2. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    3. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    4. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non‐Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71, January.
    5. Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
    6. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    10. Alan S. Manne, 1960. "Linear Programming and Sequential Decisions," Management Science, INFORMS, vol. 6(3), pages 259-267, April.
    11. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    12. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    13. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Approximate Dynamic Programming via a Smoothed Linear Program," Operations Research, INFORMS, vol. 60(3), pages 655-674, June.
    14. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    15. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    16. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
    2. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    3. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    4. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    5. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    6. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    7. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    8. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    9. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    10. Santiago R. Balseiro & David B. Brown, 2019. "Approximations to Stochastic Dynamic Programs via Information Relaxation Duality," Operations Research, INFORMS, vol. 67(2), pages 577-597, March.
    11. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    12. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    13. J'er^ome Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Papers 1901.05672, arXiv.org, revised Jul 2020.
    14. Mark S. Joshi, 2016. "Analysing the bias in the primal-dual upper bound method for early exercisable derivatives: bounds, estimation and removal," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 519-533, April.
    15. Roger J. A. Laeven & John G. M. Schoenmakers & Nikolaus F. F. Schweizer & Mitja Stadje, 2020. "Robust Multiple Stopping -- A Pathwise Duality Approach," Papers 2006.01802, arXiv.org, revised Sep 2021.
    16. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    17. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    18. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.
    19. Denis Belomestny & John Schoenmakers & Fabian Dickmann, 2013. "Multilevel dual approach for pricing American style derivatives," Finance and Stochastics, Springer, vol. 17(4), pages 717-742, October.
    20. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:58:y:2012:i:12:p:2292-2308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.