IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v23y2019i1d10.1007_s00780-018-00380-1.html
   My bibliography  Save this article

Utility maximisation in a factor model with constant and proportional transaction costs

Author

Listed:
  • Christoph Belak

    (University of Trier)

  • Sören Christensen

    (University of Hamburg)

Abstract

We study the problem of maximising expected utility of terminal wealth under constant and proportional transaction costs in a multidimensional market with prices driven by a factor process. We show that the value function is the unique viscosity solution of the associated quasi-variational inequalities and construct optimal strategies. While the value function turns out to be truly discontinuous, we are able to establish a comparison principle for discontinuous viscosity solutions which is strong enough to argue that the value function is unique, globally upper semicontinuous, and continuous if restricted to either borrowing or non-borrowing portfolios.

Suggested Citation

  • Christoph Belak & Sören Christensen, 2019. "Utility maximisation in a factor model with constant and proportional transaction costs," Finance and Stochastics, Springer, vol. 23(1), pages 29-96, January.
  • Handle: RePEc:spr:finsto:v:23:y:2019:i:1:d:10.1007_s00780-018-00380-1
    DOI: 10.1007/s00780-018-00380-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-00380-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-00380-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerome F. Eastham & Kevin J. Hastings, 1988. "Optimal Impulse Control of Portfolios," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 588-605, November.
    2. Albert Altarovici & Johannes Muhle-Karbe & Halil Soner, 2015. "Asymptotics for fixed transaction costs," Finance and Stochastics, Springer, vol. 19(2), pages 363-414, April.
    3. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    4. Seydel, Roland C., 2009. "Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3719-3748, October.
    5. Ralf Korn, 1998. "Portfolio optimisation with strictly positive transaction costs and impulse control," Finance and Stochastics, Springer, vol. 2(2), pages 85-114.
    6. repec:bla:jfinan:v:59:y:2004:i:1:p:289-338 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Belak & Lukas Mich & Frank T. Seifried, 2019. "Optimal Investment for Retail Investors with Flooredand Capped Costs," Working Paper Series 2019-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    2. Soren Christensen & Berenice Anne Neumann & Tobias Sohr, 2020. "Competition versus Cooperation: A class of solvable mean field impulse control problems," Papers 2010.06452, arXiv.org, revised Apr 2021.
    3. Christensen, Sören & Sohr, Tobias, 2020. "A solution technique for Lévy driven long term average impulse control problems," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7303-7337.
    4. Christoph Belak & Lukas Mich & Frank T. Seifried, 2022. "Optimal investment for retail investors," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 555-594, April.
    5. Luciano Campi & Davide Santis, 2020. "Nonzero-Sum Stochastic Differential Games Between an Impulse Controller and a Stopper," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 688-724, August.
    6. Christoph Knochenhauer & Alexander Merkel & Yufei Zhang, 2024. "Optimal Investment with Costly Expert Opinions," Papers 2409.11569, arXiv.org.
    7. Lin He & Zongxia Liang & Sheng Wang, 2022. "Modern Tontine with Transaction Costs," Papers 2209.09709, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Belak & Lukas Mich & Frank T. Seifried, 2019. "Optimal Investment for Retail Investors with Flooredand Capped Costs," Working Paper Series 2019-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    2. Christoph Belak & Lukas Mich & Frank T. Seifried, 2022. "Optimal investment for retail investors," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 555-594, April.
    3. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    4. Soren Christensen & Albrecht Irle & Andreas Ludwig, 2016. "Optimal portfolio selection under vanishing fixed transaction costs," Papers 1611.01280, arXiv.org, revised Jul 2017.
    5. Cohen, Samuel N. & Henckel, Timo & Menzies, Gordon D. & Muhle-Karbe, Johannes & Zizzo, Daniel J., 2019. "Switching cost models as hypothesis tests," Economics Letters, Elsevier, vol. 175(C), pages 32-35.
    6. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    7. Diego Zabaljauregui, 2019. "A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games," Papers 1909.03574, arXiv.org, revised Jun 2020.
    8. Haolin Feng & Kumar Muthuraman, 2010. "A Computational Method for Stochastic Impulse Control Problems," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 830-850, November.
    9. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    10. Ibrahim Ekren & Johannes Muhle-Karbe, 2017. "Portfolio Choice with Small Temporary and Transient Price Impact," Papers 1705.00672, arXiv.org, revised Apr 2020.
    11. Soren Christensen & Berenice Anne Neumann & Tobias Sohr, 2020. "Competition versus Cooperation: A class of solvable mean field impulse control problems," Papers 2010.06452, arXiv.org, revised Apr 2021.
    12. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    13. Yingting Miao & Qiang Zhang, 2023. "Optimal Investment and Consumption Strategies with General and Linear Transaction Costs under CRRA Utility," Papers 2304.07672, arXiv.org.
    14. Stefano Baccarin & Daniele Marazzina, 2014. "Optimal impulse control of a portfolio with a fixed transaction cost," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 355-372, June.
    15. Stefano Baccarin & Daniele Marazzina, 2013. "Portfolio Optimization over a Finite Horizon with Fixed and Proportional Transaction Costs and Liquidity Constraints," Working papers 017, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    16. Baccarin, Stefano, 2009. "Optimal impulse control for a multidimensional cash management system with generalized cost functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 198-206, July.
    17. Valeri Zakamouline, 2005. "A unified approach to portfolio optimization with linear transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 319-343, November.
    18. Cadenillas, Abel & Zapatero, Fernando, 1999. "Optimal Central Bank Intervention in the Foreign Exchange Market," Journal of Economic Theory, Elsevier, vol. 87(1), pages 218-242, July.
    19. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2004. "Asset Prices and Trading Volume under Fixed Transactions Costs," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 1054-1090, October.
    20. Mogens Graf Plessen & Alberto Bemporad, 2017. "A posteriori multi-stage optimal trading under transaction costs and a diversification constraint," Papers 1709.07527, arXiv.org, revised Apr 2018.

    More about this item

    Keywords

    Portfolio optimisation; Transaction costs; Discontinuous viscosity solutions; Comparison principle; Stochastic Perron method;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:23:y:2019:i:1:d:10.1007_s00780-018-00380-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.