IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.11569.html
   My bibliography  Save this paper

Optimal Investment with Costly Expert Opinions

Author

Listed:
  • Christoph Knochenhauer
  • Alexander Merkel
  • Yufei Zhang

Abstract

We consider the Merton problem of optimizing expected power utility of terminal wealth in the case of an unobservable Markov-modulated drift. What makes the model special is that the agent is allowed to purchase costly expert opinions of varying quality on the current state of the drift, leading to a mixed stochastic control problem with regular and impulse controls involving random consequences. Using ideas from filtering theory, we first embed the original problem with unobservable drift into a full information problem on a larger state space. The value function of the full information problem is characterized as the unique viscosity solution of the dynamic programming PDE. This characterization is achieved by a new variant of the stochastic Perron's method, which additionally allows us to show that, in between purchases of expert opinions, the problem reduces to an exit time control problem which is known to admit an optimal feedback control. Under the assumption of sufficient regularity of this feedback map, we are able to construct optimal trading and expert opinion strategies.

Suggested Citation

  • Christoph Knochenhauer & Alexander Merkel & Yufei Zhang, 2024. "Optimal Investment with Costly Expert Opinions," Papers 2409.11569, arXiv.org.
  • Handle: RePEc:arx:papers:2409.11569
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.11569
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.11569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.