IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i12p7303-7337.html
   My bibliography  Save this article

A solution technique for Lévy driven long term average impulse control problems

Author

Listed:
  • Christensen, Sören
  • Sohr, Tobias

Abstract

This article treats long term average impulse control problems with running costs in the case that the underlying process is a Lévy process. Assuming a maximum representation for the payoff function, we give easy to verify conditions for the control problem to have an s,S strategy as an optimizer. The occurring thresholds are given by the roots of an explicit auxiliary function. This leads to a step by step solution technique whose utility we demonstrate by solving a variety of examples of impulse control problems.

Suggested Citation

  • Christensen, Sören & Sohr, Tobias, 2020. "A solution technique for Lévy driven long term average impulse control problems," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7303-7337.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:12:p:7303-7337
    DOI: 10.1016/j.spa.2020.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Korn, 1999. "Some applications of impulse control in mathematical finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 493-518, December.
    2. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    3. Shackleton, Mark B. & Sødal, Sigbjørn, 2010. "Harvesting and recovery decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2533-2546, December.
    4. Alvarez, Luis H.R. & Koskela, Erkki, 2006. "Does risk aversion accelerate optimal forest rotation under uncertainty?," Journal of Forest Economics, Elsevier, vol. 12(3), pages 171-184, December.
    5. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    6. Kazutoshi Yamazaki, 2017. "Inventory Control for Spectrally Positive Lévy Demand Processes," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 212-237, January.
    7. Christoph Belak & Sören Christensen, 2019. "Utility maximisation in a factor model with constant and proportional transaction costs," Finance and Stochastics, Springer, vol. 23(1), pages 29-96, January.
    8. Mundaca, Gabriela & Oksendal, Bernt, 1998. "Optimal stochastic intervention control with application to the exchange rate," Journal of Mathematical Economics, Elsevier, vol. 29(2), pages 225-243, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soren Christensen & Albrecht Irle & Julian Peter Lemburg, 2021. "Flexible forward improvement iteration for infinite time horizon Markovian optimal stopping problems," Papers 2111.13443, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ieda, Masashi, 2015. "An implicit method for the finite time horizon Hamilton–Jacobi–Bellman quasi-variational inequalities," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 163-175.
    2. Soren Christensen & Berenice Anne Neumann & Tobias Sohr, 2020. "Competition versus Cooperation: A class of solvable mean field impulse control problems," Papers 2010.06452, arXiv.org, revised Apr 2021.
    3. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    4. Matteo Basei, 2019. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 355-383, June.
    5. Matteo Basei, 2018. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Papers 1803.08166, arXiv.org, revised Mar 2019.
    6. Jukka Isohätälä & Alistair Milne & Donald Robertson, 2020. "The Net Worth Trap: Investment and Output Dynamics in the Presence of Financing Constraints," Mathematics, MDPI, vol. 8(8), pages 1-32, August.
    7. Diego Zabaljauregui, 2019. "A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games," Papers 1909.03574, arXiv.org, revised Jun 2020.
    8. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    9. Isohätälä, Jukka & Milne, Alistair & Robertson, Donald, 2014. "The net worth trap: investment and output dynamics in the presence of financing constraints," Research Discussion Papers 26/2014, Bank of Finland.
    10. Sandun Perera & Winston Buckley, 2017. "On the existence and uniqueness of the optimal central bank intervention policy in a forex market with jumps," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 877-885, August.
    11. repec:zbw:bofrdp:2014_026 is not listed on IDEAS
    12. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Taxation and rotation age under stochastic forest stand value," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 113-127, July.
    13. Christoph Belak & Lukas Mich & Frank T. Seifried, 2019. "Optimal Investment for Retail Investors with Flooredand Capped Costs," Working Paper Series 2019-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    14. Baccarin, Stefano, 2009. "Optimal impulse control for a multidimensional cash management system with generalized cost functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 198-206, July.
    15. Christoph Belak & Lukas Mich & Frank T. Seifried, 2022. "Optimal investment for retail investors," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 555-594, April.
    16. Seydel, Roland C., 2009. "Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3719-3748, October.
    17. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    18. Jiatu Cai & Mathieu Rosenbaum & Peter Tankov, 2015. "Asymptotic Lower Bounds for Optimal Tracking: a Linear Programming Approach," Papers 1510.04295, arXiv.org.
    19. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    20. Sims, Charles & Finnoff, David, 2012. "The role of spatial scale in the timing of uncertain environmental policy," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 369-382.
    21. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:12:p:7303-7337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.